精英家教网 > 高中数学 > 题目详情
若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=2x-1,则函数y=f(x)-lg|x|的零点个数是(  )
分析:分别作出函数y=f(x),y=lg|x-1|的图象,结合函数的对称性,利用数形结合法进行求解.
解答:解:当x∈[0,1]时,f(x)=2x-1,
函数y=f(x)的周期为2,
x∈[-1,0]时,f(x)=2-x-1,
可作出偶函数f(x)的图象.
对于图象关于y轴对称的偶函数y=lg|x|.
函数y=g(x)的零点,
即为函数图象交点横坐标,
当x>10时,y=lg|x|>1,
此时函数图象无交点,
如图:又两函数在x>0上有9个交点,由f(x)和g(x)的图象都关于y轴对称,
可知它们在x<0上也有9个交点,且这些交点关于直线y轴对称,
可得函数g(x)=f(x)-lg|x|的零点个数为18,
故选 C.
点评:本题主要考查了周期函数与对数函数的图象,数形结合是高考中常用的方法,考查数形结合,本题属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex,则g(x)=(  )
A、ex-e-x
B、
1
2
(ex+e-x
C、
1
2
(e-x-ex
D、
1
2
(ex-e-x

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个命题:
①若定义在R上的偶函数f(x)在(0,+∞)上单调递增,则f(x)在(-∞,0)上单调递减;
②函数y=
kx2-6kx+9
的定义域为R,则k的取值范围是(0,1];
③要得到y=3sin(3x+
π
4
)
的图象,只需将y=3sin2x的图象左移
π
4
个单位;
④若函数 f(x)=x3-ax在[1,+∞)上是单调递增函数,则a的最大值是3.
所有正确命题的序号为
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log5|x|的零点个数有
8
8
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的偶函数f(x)在(-∞,0]上是增函数,且f(-
1
2
)=2
,那么不等式f(sin(2x-
π
3
))<2
[-
π
2
π
2
]
上的解集为(  )
A、[-
π
2
,-
π
3
)∪(-
π
4
π
12
)∪(
π
6
π
2
]
B、[-
π
2
,-
π
3
)∪(
π
6
π
2
]
C、[-
π
2
,-
π
3
)∪(-
π
4
π
2
D、[-
π
2
,-
12
)∪(-
π
4
π
12
)∪(
π
4
π
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在区间[0,1]上单调递减,则(  )
A、f(2)<f(
1
2
)<f(1)
B、f(1)<f(2)<f(
1
2
)
C、f(
1
2
)<f(2)<f(1)
D、f(1)<f(
1
2
)<f(2)

查看答案和解析>>

同步练习册答案