精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax+bx2+1
在点(-1,f(-1))的切线方程为x+y+3=0.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设g(x)=lnx,求证:g(x)≥f(x)在x∈[1,+∞)上恒成立.
分析:(I)首先求出f(1)的值,进而得出b-a=-4,然后求出函数的导数,求出f'(-1)=
b
2
=-1,就可以求出a、b的值,得出函数的解析式;
(II)将不等式整理得出(x2+1)lnx≥2x-2,问题转化成x2lnx+lnx-2x+2≥0在[1,+∞)上恒成立,然后设h(x)=x2lnx+lnx-2x+2,并求出h'(x),得出x≥1时h'(x)≥0,可知h(x)在[1,+∞)上单调递增,从而求出h(x)的最小值,得出结果.
解答:解:(Ⅰ)将x=-1代入切线方程得y=-2
f(-1)=
b-a
1+1
=-2
,化简得b-a=-4.                …(2分)
f′(x)=
a(x2+1)-(ax+b)•2x
(1+x2)2
f′(-1)=
2a+2(b-a)
4
=
2b
4
=
b
2
=-1
.                    …(4分)
解得:a=2,b=-2
f(x)=
2x-2
x2+1
.                                      …(6分)
(Ⅱ)由已知得lnx≥
2x-2
x2+1
在[1,+∞)上恒成立
化简得(x2+1)lnx≥2x-2
即x2lnx+lnx-2x+2≥0在[1,+∞)上恒成立.             …(8分)
设h(x)=x2lnx+lnx-2x+2,h′(x)=2xlnx+x+
1
x
-2

∵x≥1∴2xlnx≥0,x+
1
x
≥2
,即h'(x)≥0.         …(10分)
∴h(x)在[1,+∞)上单调递增,h(x)≥h(1)=0
∴g(x)≥f(x)在x∈[1,+∞)上恒成立.                      …(12分)
点评:本题考查了利用导数研究某点的切线方程以及函数恒成立问题,关于函数恒成立问题一般转化成求函数的最值问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案