精英家教网 > 高中数学 > 题目详情
14.已知圆C:(x-a)2+(y-2)2=4,其中a∈(0,+∞),直线l1:x-y+3=0,被圆C截得的弦长为2$\sqrt{2}$.
(1)求a的值;
(2)求过点(3,5)与圆C相切的切线方程;
(3)直线l2过P(0,1)点交圆C于AB两点,求AB中点M的轨迹方程.

分析 (1)利用弦长公式可得弦心距d=$\sqrt{2}$,再由点到直线的距离公式可得d=$\frac{|a-2+3|}{\sqrt{2}}$=$\sqrt{2}$,由此求得a的值;
(2)确定出圆的圆心的坐标,并判断得到已知点在圆外,分两种情况:当切线的斜率不存在时,得到x=3为圆的切线;当切线的斜率存在时,设切线的斜率为k,由(3,5)和设出的k写出切线的方程,根据直线与圆相切时圆心到直线的距离等于圆的半径,利用点到直线的距离公式表示出圆心到切线的距离d,让d等于圆的半径即可列出关于k的方程,求出方程的解即可得到k的值,把k的值代入所设的切线方程即可确定出切线的方程.综上,得到所有满足题意的切线的方程.
(3)利用P(0,1),C(1,2)满足:$\overrightarrow{PM}$$⊥\overrightarrow{CM}$,化简即可得到结论.

解答 解:(1)由题意利用弦长公式可得弦心距d=$\sqrt{2}$,再由点到直线的距离公式可得d=$\frac{|a-2+3|}{\sqrt{2}}$=$\sqrt{2}$,
解得a=1,或 a=-3(舍去),
∴a=1.
(2)圆C:(x-1)2+(y-2)2=4,圆心坐标为(1,2),圆的半径r=2
由(3,5)到圆心的距离为$\sqrt{13}$>r=2,得到(3,5)在圆外,
∴①当切线方程的斜率存在时,设方程为y-5=k(x-3)
由圆心到切线的距离d=$\frac{|-2k+3|}{\sqrt{{k}^{2}+1}}$=r=2,
化简得:12k=5,可解得k=$\frac{5}{12}$,
∴切线方程为5x-12y+45=0;
②当过(3,5)斜率不存在直线方程为x=3与圆相切.
由①②可知切线方程为5x-12y+45=0或x=3.
(3)设M(x,y)
∵P(0,1),C(1,2)满足:$\overrightarrow{PM}$$⊥\overrightarrow{CM}$,
∴(x,y-1)•(x-1,y-2)=0,
∴M的轨迹方程为:x2+y2-x-3y+2=0.(轨迹在圆C内)

点评 此题考查学生掌握直线与圆相切时所满足的条件,灵活运用垂径定理及勾股定理化简求值,灵活运用点到直线的距离公式化简求值,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知集合A={x|x-$\frac{1}{x}$=0,x∈R},则满足A∪B={-1,0,1}的集合B的个数是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={1,3,4},集合B={2,4,5},则A∪B=(  )
A.{2,4,5}B.{1,3,4,5}C.{1,2,4}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题p:函数f(x)=x2+2ax+2a的值域为[0,+∞),
命题q:方程(ax-1)(ax+2)=0在[-1,1]上有解,
若命题“p或q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=-x2+2ax-a-a2在x∈[0,2]上的最大值为-2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(2,x),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值是(  )
A.-4B.-1C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)由频率分布直方图估计50名学生数学成绩的中位数和平均数;
(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m,n,求事件“|m-n|>10”概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.云南省2014年全省高中男生身高统计调查显示:全省男生的身高服从正态分布N(170.5.16).高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于175.5cm和187.5cm之间,将测量结果按如下方式分成6组:第 一组[157.5,162.5),第二组[162.5,167.5),…第 6 组(182.5,187.5],按上述分组方法得到的频率分布直方图如图所示.
(1)试评估我校高三年级男生在全省高中男生中的平均身高状况;
(2)求这50名男生身高在177.5cm以上(含177.5cm)的人数;
(3)在这50名男生身高在177.5cm.以上(含177.5cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全省前130名的人数记为ζ,求ζ的数学期望.
参考数据:若ζ〜N(μ,σ2
P(μ-σ<ξ≤μ+σ)=0.6826,
p(μ-2σ<ξ≤μ+2σ)=0.9544
Pμ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°
(1)若PA=AB,求PB与平面PDC所成角的正弦值;
(3)当平面PBC与平面PDC垂直时,求PA的长.

查看答案和解析>>

同步练习册答案