精英家教网 > 高中数学 > 题目详情
13.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°
(1)若PA=AB,求PB与平面PDC所成角的正弦值;
(3)当平面PBC与平面PDC垂直时,求PA的长.

分析 (1)设AC∩BD=O,以O为坐标原点,建立空间直角坐标系O-xyz,利用向量法能求出PB与平面PDC所成角的正弦值.
(2)求出平面PBC的法向量和平面PDC的法向量,利用向量法能求出PA的长.

解答 解:(1)设AC∩BD=O,∵在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,∠BAD=60°
∴BO=1,AO=CO=$\sqrt{3}$,
如图,以O为坐标原点,建立空间直角坐标系O-xyz,
则 P(0,-$\sqrt{3}$,2),A(0,-$\sqrt{3}$,0),B(1,0,0),C(0,$\sqrt{3}$,0),D(-1,0,0)
∴$\overrightarrow{PB}$=(1,$\sqrt{3}$,-2),$\overrightarrow{PD}$=(-1,$\sqrt{3}$,-2),$\overrightarrow{PC}$=(0,2$\sqrt{3}$,-2),
设平面PDC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PD}=-x+\sqrt{3}y-2z=0}\\{\overrightarrow{n}•\overrightarrow{PC}=2\sqrt{3}y-2z=0}\end{array}\right.$,取y=$\sqrt{3}$,得$\overrightarrow{n}$=(-3,$\sqrt{3}$,3),
设PB与平面PDC所成角为θ,
则sinθ$\frac{|\overrightarrow{n}•\overrightarrow{PB}|}{|\overrightarrow{n}|•|\overrightarrow{PB}|}$=$\frac{6}{\sqrt{21}•\sqrt{8}}$=$\frac{\sqrt{14}}{14}$.
∴PB与平面PDC所成角的正弦值为$\frac{\sqrt{14}}{14}$.
(2)由(1)知$\overrightarrow{BC}$=(-1,$\sqrt{3}$,0),设P(0,-$\sqrt{3}$,t)(t>0),
则$\overrightarrow{BP}$=(-1,-$\sqrt{3}$,t),设平面PBC的法向量$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{BC}•\overrightarrow{m}=-x+\sqrt{3}y=0}\\{\overrightarrow{BP}•\overrightarrow{m}=-x-\sqrt{3}y+tz=0}\end{array}\right.$,取y=$\sqrt{3}$,得$\overrightarrow{m}$=(3,$\sqrt{3}$,$\frac{6}{t}$),
同理,平面PDC的法向量$\overrightarrow{n}$=(-3,$\sqrt{3}$,$\frac{6}{t}$),
∵平面PCB⊥平面PDC,∴$\overrightarrow{m}•\overrightarrow{n}$=-9+3+$\frac{36}{{t}^{2}}$=0,
解得t=$\sqrt{6}$,∴PA=$\sqrt{6}$.

点评 本题考查线面所成角的正弦值的求法,考查线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知圆C:(x-a)2+(y-2)2=4,其中a∈(0,+∞),直线l1:x-y+3=0,被圆C截得的弦长为2$\sqrt{2}$.
(1)求a的值;
(2)求过点(3,5)与圆C相切的切线方程;
(3)直线l2过P(0,1)点交圆C于AB两点,求AB中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.下列关于命题的说法正确的是(4)(请将所有正确命题的序号都填上)
(1)命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”;
(2)“x=-1”是“x2-5x-6=0”的必要不充分条件;
(3)命题“a,b都是有理数”的否定是“a,b都不是有理数”;
(4)命题“若x=y,则sinx=siny”的逆否命题为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{ax}{x+b}$满足:f(1)=1,f(-2)=4.
(1)求a,b的值,并探究是否存在常数c,使得对函数f(x)在定义域内的任意x,都有f(x)+f(c-x)=4成立;
(2)当x∈[1,2]时,不等式f(x)≤$\frac{2m}{(x+1)|x-m|}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线${l_1}:\sqrt{3}x+y-1=0,{l_2}:ax+y=1$,且l1⊥l2,则l1的倾斜角为$\frac{2π}{3}$,原点到l2的距离为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若Sn为等差数列{an}的前n项和,S9=-36,S13=-104,则a5=-4;S11=-66.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)是区间[-1,3]上的增函数,若f(a)>f(1-2a),则a的取值范围是($\frac{1}{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l的极坐标方程是ρcosθ-ρsinθ-1=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,曲线C的参数方程是$\left\{{\begin{array}{l}{x=cosα-1}\\{y=sinα}\end{array}}\right.$(α为参数).
(Ⅰ)求直线l的直角坐标方程和曲线C的普通方程;
(Ⅱ)若直线l与x、y轴交于M、N两点,点P为曲线C上任一点.求△PMN的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若圆台上底半径为1,下底半径和高均为4,则圆台的侧面积为25π.

查看答案和解析>>

同步练习册答案