精英家教网 > 高中数学 > 题目详情
3.若圆台上底半径为1,下底半径和高均为4,则圆台的侧面积为25π.

分析 先求出圆台侧面的母线长l,由此利用圆台的侧面积公式能求出结果.

解答 解:∵圆台上底半径为1,下底半径和高均为4,
∴l=$\sqrt{(4-1)^{2}+{4}^{2}}$=5,
∴圆台的侧面积为S=π(1+4)×5=25π.
故答案为:25π.

点评 本题考查圆台的侧面积的求法,是基础题,解题时要认真审题,注意圆台性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°
(1)若PA=AB,求PB与平面PDC所成角的正弦值;
(3)当平面PBC与平面PDC垂直时,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设命题p:不等式|2x-1|<x+a的解集是{x|-$\frac{1}{3}$<x<3};命题q:不等式4x≥ax2+1的解集是∅,若“p或q”为真命题,试求实数a的值取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$f(x)=\left\{\begin{array}{l}3{e^{x-1}},x<3\\{x^3},x≥3\end{array}\right.$,则f(f(1))的值等于27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题A:点M的直角坐标是(0,1),命题B:点M的极坐标是(1,$\frac{π}{2}$),则命题A是命题B的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sin(2x-$\frac{π}{3}$).
(1)求f(x)的单调递增区间;
(2)求f(x)的最大值及取得最大值时相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{5}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1上一点P到左焦点F1的距离为10,则当PF1的中点N到坐标原点O的距离为(  )
A.3或7B.6或14C.3D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是一个等比数列的第2项、第3项、第4项.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{n(an+3)}$ (n∈N+),Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

同步练习册答案