2£®ÒÑÖªÖ±ÏßlµÄ¼«×ø±ê·½³ÌÊǦÑcos¦È-¦Ñsin¦È-1=0£¬ÒÔ¼«µãÎªÆ½ÃæÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáΪxÖáµÄÕý°ëÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬ÇúÏßCµÄ²ÎÊý·½³ÌÊÇ$\left\{{\begin{array}{l}{x=cos¦Á-1}\\{y=sin¦Á}\end{array}}\right.$£¨¦ÁΪ²ÎÊý£©£®
£¨¢ñ£©ÇóÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌºÍÇúÏßCµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓëx¡¢yÖá½»ÓÚM¡¢NÁ½µã£¬µãPΪÇúÏßCÉÏÈÎÒ»µã£®Çó¡÷PMNµÄÃæ»ýµÄ×îСֵ£®

·ÖÎö £¨¢ñ£©Ö±ÏßlµÄ¼«×ø±ê·½³ÌÊǦÑcos¦È-¦Ñsin¦È-1=0£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃ£ºÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£®ÇúÏßCµÄ²ÎÊý·½³ÌÊÇ$\left\{{\begin{array}{l}{x=cos¦Á-1}\\{y=sin¦Á}\end{array}}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃ£ºÇúÏßCµÄÆÕͨ·½£®
£¨¢ò£© ÇúÏßCÊÇÒÔ£¨-1£¬0£©Ô²ÐÄ£¬ÒÔ1Ϊ°ë¾¶µÄÔ²£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃ£ºÔ²Ðĵ½Ö±ÏßlµÄ¾àÀëΪd£¬|MN|=$2\sqrt{{r}^{2}-{d}^{2}}$£¬¼´¿ÉµÃ³ö¡÷PMNµÄÃæ»ýµÄ×îСֵ£®

½â´ð ½â£º£¨¢ñ£©Ö±ÏßlµÄ¼«×ø±ê·½³ÌÊǦÑcos¦È-¦Ñsin¦È-1=0£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃ£ºÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx-y-1=0£®
ÇúÏßCµÄ²ÎÊý·½³ÌÊÇ$\left\{{\begin{array}{l}{x=cos¦Á-1}\\{y=sin¦Á}\end{array}}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃ£ºÇúÏßCµÄÆÕͨ·½³ÌΪ£¨x+1£©2+y2=1£®
£¨¢ò£© ÇúÏßCÊÇÒÔ£¨-1£¬0£©Ô²ÐÄ£¬ÒÔ1Ϊ°ë¾¶µÄÔ²£¬
Ô²Ðĵ½Ö±ÏßlµÄ¾àÀëΪ$\frac{{|{-1-0-1}|}}{{\sqrt{2}}}=\sqrt{2}$£¬
ÓÖ|MN|=$2\sqrt{{r}^{2}-{d}^{2}}$=$\sqrt{2}$£¬ËùÒÔ¡÷PMNµÄÃæ»ýµÄ×îСֵÊÇ$\frac{1}{2}¡Á\sqrt{2}¡Á£¨\sqrt{2}-1£©=1-\frac{{\sqrt{2}}}{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢ÏÒ³¤¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÆÄÏÊ¡2014Äêȫʡ¸ßÖÐÄÐÉúÉí¸ßͳ¼Æµ÷²éÏÔʾ£ºÈ«Ê¡ÄÐÉúµÄÉí¸ß·þ´ÓÕý̬·Ö²¼N£¨170.5.16£©£®¸ßÈýÄê¼¶ÄÐÉúÖÐËæ»ú³éÈ¡50Ãû²âÁ¿Éí¸ß£¬²âÁ¿·¢ÏÖ±»²âѧÉúÉí¸ßÈ«²¿½éÓÚ175.5cmºÍ187.5cmÖ®¼ä£¬½«²âÁ¿½á¹û°´ÈçÏ·½Ê½·Ö³É6×飺µÚ Ò»×é[157.5£¬162.5£©£¬µÚ¶þ×é[162.5£¬167.5£©£¬¡­µÚ 6 ×飨182.5£¬187.5]£¬°´ÉÏÊö·Ö×é·½·¨µÃµ½µÄƵÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£®
£¨1£©ÊÔÆÀ¹ÀÎÒУ¸ßÈýÄê¼¶ÄÐÉúÔÚȫʡ¸ßÖÐÄÐÉúÖÐµÄÆ½¾ùÉí¸ß×´¿ö£»
£¨2£©ÇóÕâ50ÃûÄÐÉúÉí¸ßÔÚ177.5cmÒÔÉÏ£¨º¬177.5cm£©µÄÈËÊý£»
£¨3£©ÔÚÕâ50ÃûÄÐÉúÉí¸ßÔÚ177.5cm£®ÒÔÉÏ£¨º¬177.5cm£©µÄÈËÖÐÈÎÒâ³éÈ¡2ÈË£¬¸Ã2ÈËÖÐÉí¸ßÅÅÃû£¨´Ó¸ßµ½µÍ£©ÔÚȫʡǰ130ÃûµÄÈËÊý¼ÇΪ¦Æ£¬Ç󦯵ÄÊýѧÆÚÍû£®
²Î¿¼Êý¾Ý£ºÈô¦Æ〜N£¨¦Ì£¬¦Ò2£©
P£¨¦Ì-¦Ò£¼¦Î¡Ü¦Ì+¦Ò£©=0.6826£¬
p£¨¦Ì-2¦Ò£¼¦Î¡Ü¦Ì+2¦Ò£©=0.9544
P¦Ì-3¦Ò£¼¦Î¡Ü¦Ì+3¦Ò£©=0.9974£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬PA¡ÍÆ½ÃæABCD£¬µ×ÃæABCDÊÇÁâÐΣ¬AB=2£¬¡ÏBAD=60¡ã
£¨1£©ÈôPA=AB£¬ÇóPBÓëÆ½ÃæPDCËù³É½ÇµÄÕýÏÒÖµ£»
£¨3£©µ±Æ½ÃæPBCÓëÆ½ÃæPDC´¹Ö±Ê±£¬ÇóPAµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Ô²x2+y2-4x=0µÄÔ²ÐÄ×ø±êºÍ°ë¾¶·Ö±ð£¨2£¬0£©£¬2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ò»Ã¶Ó²±ÒÁ¬ÖÀ3´Î£¬½öÓÐÁ½´ÎÕýÃæÏòÉϵĸÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{8}$B£®$\frac{3}{8}$C£®$\frac{5}{8}$D£®$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®£¨1£©ÒÑÖªº¯Êý$f£¨x£©=Asin{£¨¦Øx+¦Õ£©_{\;}}£¨A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼\frac{¦Ð}{2}£©$µÄͼÏóµÄÒ»²¿·ÖÈçͼËùʾ£®Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÒÑÖªf£¨x£©=$sin£¨2x+\frac{¦Ð}{6}£©$+$\frac{3}{2}$£¬x¡ÊR£®º¯Êýf£¨x£©µÄͼÏó¿ÉÒÔÓɺ¯Êýy=sin2x£¨x¡ÊR£©µÄͼÏó¾­¹ýÔõÑù±ä»»µÃµ½£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÉèÃüÌâp£º²»µÈʽ|2x-1|£¼x+aµÄ½â¼¯ÊÇ{x|-$\frac{1}{3}$£¼x£¼3}£»ÃüÌâq£º²»µÈʽ4x¡Ýax2+1µÄ½â¼¯ÊÇ∅£¬Èô¡°p»òq¡±ÎªÕæÃüÌ⣬ÊÔÇóʵÊýaµÄֵȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖª$f£¨x£©=\left\{\begin{array}{l}3{e^{x-1}}£¬x£¼3\\{x^3}£¬x¡Ý3\end{array}\right.$£¬Ôòf£¨f£¨1£©£©µÄÖµµÈÓÚ27£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1ÉÏÒ»µãPµ½×ó½¹µãF1µÄ¾àÀëΪ10£¬Ôòµ±PF1µÄÖеãNµ½×ø±êÔ­µãOµÄ¾àÀëΪ£¨¡¡¡¡£©
A£®3»ò7B£®6»ò14C£®3D£®7

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸