精英家教网 > 高中数学 > 题目详情
7.(1)已知函数$f(x)=Asin{(ωx+φ)_{\;}}(A>0,ω>0,|φ|<\frac{π}{2})$的图象的一部分如图所示.求函数f(x)的解析式;
(2)已知f(x)=$sin(2x+\frac{π}{6})$+$\frac{3}{2}$,x∈R.函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样变换得到?

分析 (1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(2)利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:(1)∵如图是函数$f(x)=Asin{(ωx+φ)_{\;}}(A>0,ω>0,|φ|<\frac{π}{2})$的图象的一部分,
∴A=2,$\frac{1}{4}•\frac{2π}{ω}$=3-1,∴ω=$\frac{π}{4}$,再根据五点法作图可得$\frac{π}{4}$•(-1)+φ=0,∴φ=$\frac{π}{4}$,
∴f(x)=2sin($\frac{π}{4}x+\frac{π}{4}$).
(2)把函数y=sin2x(x∈R)的图象向左平移$\frac{π}{12}$个单位,再向上平移$\frac{3}{2}$个单位,
可得y=sin2(x+$\frac{π}{12}$)+$\frac{3}{2}$=sin(2x+$\frac{π}{6}$)+$\frac{3}{2}$的图象.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=$\frac{ax-2}{x-1}$的图象关于点(1,1)对称,则实数a=1 .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若Sn为等差数列{an}的前n项和,S9=-36,S13=-104,则a5=-4;S11=-66.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.关于相关指数R2,下列说法正确的是(  )
A.R2越大,线性相关系数r越小
B.R2越小,线性相关系数越小
C.R2越大,线性相关程度越小,R2越接近0,线性先关程度越大
D.R2≥0且R2越接近1,线性相关程度越大,R2越接近0,线性相关程度越小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l的极坐标方程是ρcosθ-ρsinθ-1=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,曲线C的参数方程是$\left\{{\begin{array}{l}{x=cosα-1}\\{y=sinα}\end{array}}\right.$(α为参数).
(Ⅰ)求直线l的直角坐标方程和曲线C的普通方程;
(Ⅱ)若直线l与x、y轴交于M、N两点,点P为曲线C上任一点.求△PMN的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为$ρ=2\sqrt{3}sinθ$.
(1)写出圆C的直角坐标方程及直线l的直角坐标方程;
(2)P为直线l上一动点,当P到圆心C的距离最小时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=ax+2-3(a>0,a≠1)恒过定点A,若点A在直线mx+ny=-2(m>0,n>0)上,则$\frac{1}{m}+\frac{1}{n}$的最小值为(  )
A.3B.4C.$\frac{{3+2\sqrt{2}}}{3}$D.$\frac{{3-2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在复平面内,复数$z=\frac{2i}{1-i}$(i为虚数单位)对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=sinx+cosx,则f(x)的最大值$\sqrt{2}$;f(x)的一条对称轴为$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案