分析 当p为真时,函数f(x)=x2+2ax+2a=(x+a)2-a2+2a的值域为[0,+∞),可得-a2+2a=0,解得a.当q为真时,(i)当a=0时,不符合条件;(ii)当a≠0时,有x=$\frac{1}{a}$或x=-$\frac{2}{a}$.由题意可得:$-1≤\frac{1}{a}≤1$或-1$≤-\frac{2}{a}$≤1.解得a范围,“p或q”假,即p假且q假,即可得出.
解答 解:当p为真时,函数f(x)=x2+2ax+2a=(x+a)2-a2+2a的值域为[0,+∞),
∴-a2+2a=0,解得a=0或a=2.
当q为真时,(i)当a=0时,不符合条件;(ii)当a≠0时,有x=$\frac{1}{a}$或x=-$\frac{2}{a}$.
∴$-1≤\frac{1}{a}≤1$或-1$≤-\frac{2}{a}$≤1,
解得a≥1或a≤-1,a≥2或a≤-2,即a≥1或a≤-1.
“p或q”假,即p假且q假,
∴$\left\{\begin{array}{l}{-1<a<1}\\{a≠0,且a≠2}\end{array}\right.$,解得-1<a<1且a≠0.
∴a的取值范围为{a|-1<a<1且a≠0}.
点评 本题考查了函数的性质、不等式与方程的解法、简易逻辑的判断方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x1>x2 | B. | x1<x2 | C. | x1+x2>0 | D. | x1+x2<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com