精英家教网 > 高中数学 > 题目详情
9.若x,y满足约束条件$\left\{\begin{array}{l}x-y+1≤0\\ x-2y≤0\\ x+2y-2≤0\end{array}\right.$,则z=x+y的最大值为(  )
A.-3B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

分析 由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x-y+1≤0\\ x-2y≤0\\ x+2y-2≤0\end{array}\right.$作出可行域如图,
化目标函数z=x+y为y=-x+z,
由图可知,当直线y=-x+z过A时,z取得最大值,
由$\left\{\begin{array}{l}{x+2y-2=0}\\{x-2y=0}\end{array}\right.$,解得A(1,$\frac{1}{2}$)时,
目标函数有最大值,为z=1+$\frac{1}{2}$=$\frac{3}{2}$.
故选:D.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥P-ABCD,底面ABCD为矩形,AB=PA=$\sqrt{3}$,AD=2,PB=$\sqrt{6}$,E为PB中点,且AE⊥PC.
(1)求证:PA⊥平面ABCD;
(2)线段BC上是否存在点M使得二面角P-MD-A的大小为60°?若存在,求出BM的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图是某几何体的三视图,其正视图,侧视图均为直径为2的半圆,俯视图是直径为2的圆,则该几何体的表面积为(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)对定义域内的任意x1,x2,当f(x1)=f(x2)时,总有x1=x2,则称函数f(x)为单纯函数,例如函数f(x)=x是单纯函数,但函数f(x)=x2不是单纯函数,下列命题:
①函数$f(x)=\left\{\begin{array}{l}{log_2}x,x≥2\\ x-1,x<2\end{array}\right.$是单纯函数;
②当a>-2时,函数$f(x)=\frac{{{x^2}+ax+1}}{x}$在(0,+∞)上是单纯函数;
③若函数f(x)为其定义域内的单纯函数,x1≠x2,则f(x1)≠f(x2);
④若函f(x)数是单纯函数且在其定义域内可导,则在其定义域内一定存在x0使其导数f'(x0)=0.
其中正确的命题为①③.(填上所有正确的命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若a1=1,对任意的n∈N*,都有an>0,且nan+12-(2n-1)an+1an-2an2=0设M(x)表示整数x的个位数字,则M(a2017)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若$f(x)=cos2x+acos({\frac{π}{2}+x})$在区间$({\frac{π}{6},\frac{π}{2}})$上是增函数,则实数a的取值范围为(  )
A.[-2,+∞)B.(-2,+∞)C.(-∞,-4)D.(-∞,-4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|x-2|+2x-3,记f(x)≤-1的解集为M.
(Ⅰ)求M;
(Ⅱ)当x∈M时,证明:x[f(x)]2-x2f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从数字1,2,3,4中任取两个不同的数字构成一个两位数,这个两位数大于20的概率是(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)是定义在R上的奇函数,且f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+1),x≥0}\\{g(x),x<0}\end{array}\right.$,则g(-8)=(  )
A.-2B.-3C.2D.3

查看答案和解析>>

同步练习册答案