精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,曲线C1 (a为参数)经过伸缩变换 后的曲线为C2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)求C2的极坐标方程;
(Ⅱ)设曲线C3的极坐标方程为ρsin( ﹣θ)=1,且曲线C3与曲线C2相交于P,Q两点,求|PQ|的值.

【答案】解:(Ⅰ)C2的参数方程为 (α为参数),普通方程为(x′﹣1)2+y′2=1, ∴C2的极坐标方程为ρ=2cosθ;
(Ⅱ)C2是以(1,0)为圆心,2为半径的圆,曲线C3的极坐标方程为ρsin( ﹣θ)=1,直角坐标方程为x﹣ y﹣2=0,
∴圆心到直线的距离d= =
∴|PQ|=2 =
【解析】(Ⅰ)求出C2的参数方程,即可求C2的极坐标方程;(Ⅱ)C2是以(1,0)为圆心,2为半径的圆,曲线C3的极坐标方程为ρsin( ﹣θ)=1,直角坐标方程为x﹣ y﹣2=0,求出圆心到直线的距离,即可求|PQ|的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】由直线x+2y7=0上一点P引圆x2+y22x+4y+2=0的一条切线,切点为A,则|PA|的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南北朝时代的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容 异”.“势’’即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底为l的梯形,且当实数t取[0,3]上的任意值时,直线y=t被图l和图2所截得的两线段长始终相等,则图l的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)与y=F(x)的图象关于y轴对称,当函数y=f(x)和y=F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”.若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则实数t的取值范围是(
A.(0,2]
B.[ ,+∞)
C.[ ,2]
D.[ ,2]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数kR),且满足f(﹣1)=f(1).

(1)求k的值;

(2)若函数y=fx)的图象与直线没有交点,求a的取值范围;

(3)若函数x[0,log23],是否存在实数m使得hx)最小值为0,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数上是增函数,求实数的取值范围;

(2)若存在实数使得关于的方程有三个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为E,G,则|EG|的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥母线长为5,底面圆半径长为4,点M是母线PA的中点,AB是底面圆的直径,点C是弧AB的中点;
(1)求三棱锥P﹣ACO的体积;
(2)求异面直线MC与PO所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由数字1,2,…,6构成的且含有1,6相邻的n位数有多少个?

查看答案和解析>>

同步练习册答案