精英家教网 > 高中数学 > 题目详情

【题目】由直线x+2y7=0上一点P引圆x2+y22x+4y+2=0的一条切线,切点为A,则|PA|的最小值为__________

【答案】

【解析】

根据题意,将圆的一般方程变形为标准方程,即可得圆心坐标与半径,由直线与圆相切的性质可得|PA|2=|MP|2﹣r2=|MP|2﹣3,分析可得|MP|取得最小值时,|PA|取得最小值,据此分析可得答案.

根据题意,圆x2+y2﹣2x+4y+2=0的标准方程为(x﹣1)2+(y+2)2=3,

则圆的圆心为(1,﹣2),半径r=

设圆心为M,

则|PA|2=|MP|2﹣r2=|MP|2﹣3,

则|MP|取得最小值时,|PA|取得最小值,

且|MP|的最小值即M到直线x+2y﹣7=0的距离,|MP|最小值==2

则|PA|最小值=

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过其右焦点F且与x轴垂直的直线交椭圆C于P,Q两点,椭圆C的右顶点为R,且满足.

(1)求椭圆C的方程;

(2)若斜率为k(其中)的直线l过点F,且与椭圆交于点A,B,弦AB的中点为M,直线OM与椭圆交于点C,D,求四边形ACBD面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】闽越水镇是闽侯县打造闽都水乡文化特色小镇核心区,该小镇有一块1800平方米的矩形地块,开发商准备在中间挖出三个矩形池塘养闽侯特色金鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植柳树,形成柳中观鱼特色景观.假设池塘周围的基围宽均为2米,如图,设池塘所占的总面积为平方米.

(1)试用表示a及

(2)当取何值时,才能使得最大?并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=8lnx+15x﹣x2 , 数列{an}满足an=f(n),n∈N+ , 数列{an}的前n项和Sn最大时,n=(
A.15
B.16
C.17
D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,若方程f(f(x))=a(a>0)恰有两个不相等的实根x1 , x2 , 则e e 的最大值为(
A.
B.2(ln2﹣1)
C.
D.ln2﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过原点O(0,0)且与直线y=2x﹣8相切于点P(4,0).

(1)求圆C的方程;

(2)已知直线l经过点(4, 5),且与圆C相交于MN两点,若|MN|=2,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
设函数f(x)=|2x+2|﹣|x﹣2|.
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若x∈R,f(x)≥t2 t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,其中为常数.

1)证明:

2)是否存在,使得为等差数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,曲线C1 (a为参数)经过伸缩变换 后的曲线为C2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)求C2的极坐标方程;
(Ⅱ)设曲线C3的极坐标方程为ρsin( ﹣θ)=1,且曲线C3与曲线C2相交于P,Q两点,求|PQ|的值.

查看答案和解析>>

同步练习册答案