精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)当a=1时,若曲线y=f(x)在点M (x0,f(x0))处的切线与曲线y=g(x)在点P (x0, g(x0))处的切线平行,求实数x0的值;
(II)若(0,e],都有f(x)≥g(x)+,求实数a的取值范围.

(Ⅰ) ;(II) .

解析试题分析:(Ⅰ) 将两切线平行,转化为两直线的斜率相等,借助导数的几何意义建立等量关系;(II)该恒成立问题可转化为最值问题.即只需找到上的最小值,使它的最小值大于或等于0即可.
试题解析:(I)当因为,                         2分
若函数在点处的切线与函数在点
处的切线平行,
所以,解得         
此时在点处的切线为
在点处的切线为
所以                                                 4分
(II)若,都有

只要上的最小值大于等于0
                                             6分
的变化情况如下表:







0



极大值

                         &n

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若处的切线方程;
(2)若在区间上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是实数,函数,分别是的导函数,若在区间上恒成立,则称在区间上单调性一致.
(Ⅰ)设,若函数在区间上单调性一致,求实数的取值范围;
(Ⅱ)设,若函数在以为端点的开区间上单调性一致,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中),且函数的图象在点处的切线与函数的图象在点处的切线重合.
(Ⅰ)求实数a,b的值;
(Ⅱ)若,满足,求实数的取值范围;
(Ⅲ)若,试探究的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数().
(Ⅰ)当时,求函数的极值;   
(Ⅱ)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求函数的极值;
(Ⅱ)设函数,求函数的单调区间;
(Ⅲ)若在区间)上存在一点,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若x=1时取得极值,求实数的值;
(2)当时,求上的最小值;
(3)若对任意,直线都不是曲线的切线,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 函数
(1)已知任意三次函数的图像为中心对称图形,若本题中的函数图像以为对称中心,求实数的值
(2)若,求函数在闭区间上的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处取得极小值-4,使其导数的取值范围为,求:
(1)的解析式;
(2),求的最大值;

查看答案和解析>>

同步练习册答案