【题目】对某个品牌的U盘进行寿命追踪调查,所得情况如下面频率分布直方图所示. ![]()
(1)图中纵坐标y0处刻度不清,根据图表所提供的数据还原y0;
(2)根据图表的数据按分层抽样,抽取20个U盘,寿命为1030万次之间的应抽取几个;
(3)从(2)中抽出的寿命落在1030万次之间的元件中任取2个元件,求事件“恰好有一个寿命为1020万次,一个寿命为2030万次”的概率.
【答案】
(1)解:∵0.01×10+20y0+0.02×10+0.04×10=1,∴y0=0.015
(2)解:10~30万次之间的U盘所占频率为0.01×10+0.015×10=0.25,
设10~30万次之间的U盘应抽取x个,
,∴x=5
(3)解:10~20万次应抽取20×10×0.01=2个,设为a1,a2,
20~30万次应抽取20×10×0.015=3个,
设为b1,b2,b3,寿命落在1030万次之间的元件中任取2个元件,一切可能结果组成的基本事件空间为 ![]()
“抽取的两个U盘恰好有一个寿命为1020万次,一个寿命为2030万次”为事件A,则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2)},
则对应的概率 ![]()
【解析】(1)图根据频率分布直方图进行求解;(2)利用分层抽样的定义建立比例关系即可得到结论.(3)利用列举法进行求解.
【考点精析】本题主要考查了分层抽样的相关知识点,需要掌握先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知x0 , x0+
是函数f(x)=cos2(wx﹣
)﹣sin2wx(ω>0)的两个相邻的零点
(1)求
的值;
(2)若对
,都有|f(x)﹣m|≤1,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)
已知抛物线
的焦点为
,
为
上异于原点的任意一点,过点
的直线
交
于另一点
,交
轴的正半轴于点
,且有
.当点
的横坐标为
时,
为正三角形.
(Ⅰ)求
的方程;
(Ⅱ)若直线
,且
和
有且只有一个公共点
,
(ⅰ)证明直线
过定点,并求出定点坐标;
(ⅱ)
的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)若
满足
,且在定义域内
恒成立,求实数
的取值范围;
(Ⅱ)若函数
在定义域上是单调函数,求实数
的最小值;
(Ⅲ)当
时,试比较
与
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市教育部门拟从18名高中数学教师中选拔2人参加省教师技能大赛.为缩短比赛时间,将这18名教师随机分成
,
两组,其选拔赛成绩的茎叶图如图所示.该教育部门先将成绩不低于85分的教师初选出来进行培训后,再从中选拔2人参加省教师技能大赛.
![]()
(Ⅰ)若仅从初选选手中随机抽选2人参加省赛,并记抽选的2人中来自
组的人数为
,试求
的分布列和期望值;
(Ⅱ)在(Ⅰ)的条件下,若参加省赛的2人是同性的概率等于
,求初选出来参加培训的男教师和女教师的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cosωx(sinωx+
cosωx)(ω>0),如果存在实数x0 , 使得对任意的实数x,都有f(x0)≤f(x)≤f(x0+2016π)成立,则ω的最小值为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(3,﹣4),
=(6,﹣3),
=(5﹣x,﹣3﹣y),
=(4,1)
(1)若四边形ABCD是平行四边形,求x,y的值;
(2)若△ABC为等腰直角三角形,且∠B为直角,求x,y的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如表所示:
A | B | C | D | E | |
身高 | 1.69 | 1.73 | 1.75 | 1.79 | 1.82 |
体重指标 | 19.2 | 25.1 | 18.5 | 23.3 | 20.9 |
(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率
(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,
是定义域为R上的奇函数.
(1)求
的值;
(2)已知
,函数
,
,求
的值域;
(3)若
,试问是否存在正整数
,使得
对
恒成立?若存在,请求出所有的正整数
;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com