精英家教网 > 高中数学 > 题目详情

【题目】高一某班级在学校数学嘉年华活动中推出了一款数学游戏,受到大家的一致追捧.游戏规则如下:游戏参与者连续抛掷一颗质地均匀的骰子,记第i次得到的点数为,若存在正整数n,使得,则称为游戏参与者的幸运数字。

(I)求游戏参与者的幸运数字为1的概率;

(Ⅱ)求游戏参与者的幸运数字为2的概率,

【答案】(I);(Ⅱ)

【解析】

(I)先设“游戏参与者的幸运数字为1”为事件A,根据题意得到,且只抛了1次骰子,进而可求出概率;

(Ⅱ)设“游戏参与者的幸运数字为2”为事件B,根据题意得到,且抛掷了2次骰子,由题意得到总的基本事件个数,以及满足条件的基本事件个数,即可求出概率.

(I)设“游戏参与者的幸运数字为1”为事件A,

由题意知,抛掷了1次骰子,

相应的基本事件空间为,共有6个基本事件,

,只有1个基本事件,

所以

(Ⅱ)设“游戏参与者的幸运数字为2”为事件B,

由题意知,抛掷了2次骰子,

相应的基本事件空间为

共有36个基本事件,

,共有5个基本事件 ,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四边形ABCD中,对角线AC,BD垂直相交于点O,且OA=OB=OD=4,OC=3. 将△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小为90°(如图).已知Q为EO的中点,点P在线段AB上,且
(Ⅰ)证明:直线PQ∥平面ADE;
(Ⅱ)求直线BD与平面ADE所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋中装有大小、材质都相同的个红球,个黑球和个白球,从口袋中一次摸出一个球,连续摸球两次

)如果摸出后不放回,求第一次摸出黑球,第二次摸出白球的概率;

)如果摸出后放回,求恰有一次摸到黑球的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校期中考试数学试卷中,抽取样本,考察成绩分布,将样本分成5组,绘成频率分布直方图,图中各小组的长方形面积之比从左至右依次为1:3:6:4:2,第一组的频数是4.

1)求样本容量及各组对应的频率;

2)根据频率分布直方图估计成绩的平均分和中位数(结果保留两位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,以x轴正半轴为始边作锐角α,其终边与单位圆交于点A.以OA为始边作锐角β,其终边与单位圆交于点B,AB=
(1)求cosβ的值;
(2)若点A的横坐标为 ,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣x﹣lnx,a∈R.
(1)当 时,求函数f(x)的最小值;
(2)若﹣1≤a≤0,证明:函数f(x)有且只有一个零点;
(3)若函数f(x)有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在等腰梯形中,,点的中点.将沿折起,使点到达的位置,得到如图所示的四棱锥,点为棱的中点.

(1)求证:平面

(2)若平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项为1,且,数列满足,对任意,都有.

(1)求数列的通项公式;

(2)令,数列的前项和为.若对任意的,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图后,记“输出是好点”为事件A.

(1)若为区间内的整数值随机数,为区间内的整数值随机数,求事件A发生的概率;

(2)若为区间内的均匀随机数,为区间内的均匀随机数,求事件A发生的概率.

查看答案和解析>>

同步练习册答案