精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足,函数是定义在上的奇函数,且满足.

(Ⅰ)确定的关系式,并求的解析式.

(Ⅱ)若数列的前项和为,数列的前项和为,且,是否存在实数,使得对于任意的,都有恒成立?若存在,求出的最大值.

【答案】(Ⅰ)(Ⅱ)存在,的最大值为0.

【解析】

)根据函数是定义在上的奇函数,且数列满足,可得,从而可得为等比数列,并得出的解析式;

)由求出,递推公式代入可得,由裂项求和可得,代入不等式分离参数,转化为函数最值问题即可求解的最大值.

函数是定义在上的奇函数,且数列满足

,而.

.

为等比数列.

.

.

.

恒成立,即恒成立,

对于任意的恒成立,

关于单调递减且恒成立,

.

的最大值为0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中是自然对数的底数,.

(1) 若是函数的导函数,当时,解关于的不等式

(2) 若 上是单调增函数,求的取值范围;

(3) 当时,求整数的所有值,使方程上有解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若有两个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆E1ab0)上一动点P向圆Ox2+y2b2引两条切线PAPB,切点分别是AB.直线AB分别与x轴,y轴交于点MNO为坐标原点).

1)若在椭圆E上存在点P,满足PAPB,求椭圆E的离心率的取值范围;

2)求证:在椭圆E内,存在一点C满足|CO||CA||CP||CB|

3)若椭圆E的短轴长为2,△MON面积的最小值为,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向左平移个单位,然后纵坐标不变,横坐标变为原来的倍,得到的图象,下面四个结论正确的是( )

A. 函数在区间上为增函数

B. 将函数的图象向右平移个单位后得到的图象关于原点对称

C. 是函数图象的一个对称中心

D. 函数上的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】又到了品尝小龙虾的季节,小龙虾近几年来被称作是“国民宵夜”风靡国内外.在巨大的需求市场下,湖北的小龙虾产量占据了全国的半壁江山,湖北某地区近几年的小龙虾产量统计如下表:

年份

2013

2014

2015

2016

2017

2018

年份代码

1

2

3

4

5

6

年产量(万吨)

6.6

6.9

7.4

7.7

8

8.4

1)根据表中数据,建立关于的线性回归方程

2)根据线性回归方程预测2019年该地区农产品的年产量.

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:.(参考数据:,计算结果保留小数点后两位).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汕尾市基础教育处为调查在校中学生每天放学后的自学时间情况,在本市的所有中学生中随机抽取了120名学生进行调查,现将日均自学时间小于1小时的学生称为“自学不足”者根据调查结果统计后,得到如下列联表,已知在调查对象中随机抽取1人,为“自学不足”的概率为

非自学不足

自学不足

合计

配有智能手机

30

没有智能手机

10

合计

请完成上面的列联表;

根据列联表的数据,能否有的把握认为“自学不足”与“配有智能手机”有关?

附表及公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线方程为y2=-4x,直线l的方程为2x+y-4=0,在抛物线上有一动点A,点A到y轴的距离为m,到直线l的距离为n,则m+n的最小值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求不等式的解集;

(2)若不等式的解集为空集,求实数的取值范围.

查看答案和解析>>

同步练习册答案