精英家教网 > 高中数学 > 题目详情
设函数f(x)=ex-x(e为自然对数的底数).
(1)求f(x)的单调区间;
(2)证明:当x∈R时,ex≥x+1.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(1)先求导数,然后根据导数的正负,可得函数的单调性;
(2)研究函数的极值点,连续函数f(x)在区间(a,b)内只有一个极值,那么极小值就是最小值,即可证明结论.
解答: (1)解:的导数f′(x)=ex-1
令f′(x)>0,解得x>0;令f′(x)<0,解得x<0.
从而f(x)在(-∞,0)内单调递减,在(0,+∞)内单调递增;
(2)证明:由(1)知当x=0时,f(x)取得最小值1,
∴ex-x≥1,
∴当x∈R时,ex≥x+1.
点评:本题主要考查了函数的单调性,考查利用导数求闭区间上函数的最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
1
2
x2+bx+c,且f(x)在x=1处取得极值.
(Ⅰ)求b的值;
(Ⅱ)若当x∈[-1,2]时,f(x)<c2恒成立,求c的取值范围;
(Ⅲ)对任意的x1,x2∈[-1,2],|f(x1)-f(x2)|≤
7
2
是否恒成立?如果成立,给出证明,如果不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若正方形ABCD的一个顶点A(3,2),BC边所在直线方程是x+y-3=0,试求此正方形的其余三边所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(2x+3)+x2
(1)讨论f(x)的单调性;
(2)求f(x)=ln(2x+3)+x2在区间[-
3
4
1
4
]
上的最大值与最小值..

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,A(1,3),AB、AC边上中线方程分别为x-2y+1=0,y-1=0,求顶点B、C两点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1的参数方程为
x=2cosθ
y=
2
sinθ
(θ为参数),曲线C2的参数方程为
x=
2
2
t
y=
2
2
t+
2
(t为参数),且曲线C1与C2相交于A,B两点.
(1)求曲线C1,C2的普通方程;
(2)若点F(
2
,0),求△FAB的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示(单位:cm),四边形ABCD为直角梯形,求图形中阴影部分绕AB旋转一周所成的几何体的表面积和体积,并画出该几何体的三视图.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
(x-1)2
+aln(x-1),a为常数.
(1)判断f(x)的单调性,并写出单调区间.
(2)当a=1时,证明:对x≥2的函数f(x)图象不可能在直线y=x-1上方.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两地相距S千米,汽车从甲地匀速行驶到乙,速度不得超过c千米/小时,已知汽车每小时的运输成本由可变部分和固定部分组成:可变部分与速度v(单位:千米/小时)的平方成正比,比例系数为b,固定部分为a元,为使全程运输成本最小,汽车应以多大速度行驶?

查看答案和解析>>

同步练习册答案