精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,点A(4,0)、B(1,0),动点P满足
AB
AP
=6|
PB
|

(1)求点P的轨迹C的方程.
(2)若直线y=x+b(b>0)与轨迹C相交于M、N两点,直线y=x-b与轨迹C相交于P、Q两点,顺次连接M、N、P、Q得到的四边形MNPQ是菱形,求b.
分析:(1)设出P的坐标,则
AB
AP
PB
可表示出,根据
AB
AP
=6|
PB
|
整理求得P的轨迹方程.
(2)设出M,N的坐标,利用对称性可推断出P,Q的坐标,因为MNPQ是菱形,判断出MP⊥NQ,
MP
NQ
=0
,即x1x2+y1y2=0,由直线与椭圆的方程联立消去y后,根据韦达定理表示出x1+x2和x1x2,进而利用x1x2+y1y2=0,求得b.
解答:解:(1)设P(x,y),则
AB
=(-3,0)
AP
=(x-4,y)
PB
=(1-x,-y)

因为
AB
AP
=6|
PB
|
,所以-3(x-4)=6
(x-1)2+y2

化简整理得点P的轨迹C的方程为
x2
4
+
y2
3
=1

(2)设M(x1,y1)、N(x2,y2),由C的对称性,得P(-x1,-y1)、Q(-x2,-y2),
因为MNPQ是菱形,所以MP⊥NQ,
MP
NQ
=0
,即x1x2+y1y2=0,
x2
4
+
y2
3
=1
y=x+b
得7x2+8bx+(4b2-12)=0,x1+x2=-
8b
7
x1x2=
4b2-12
7

x1x2+y1y2=x1x2+(x1+b)(x2+b)=2x1x2+b(x1+x2)+b2=b2-
24
7
=0

检验知,此时△=(8b)2-4×7×(4b2-12)=336-48b2=
1200
7
>0

所以b=
2
42
7
点评:本题主要考查了直线与圆锥曲线的综合问题,轨迹方程问题.考查了学生分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案