精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1),其中n∈N*
(1)求证:{an}是等差数列;
(2)求证:an•an+1<4Sn
(3)求证:
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
5
3
考点:数列的求和
专题:证明题,等差数列与等比数列
分析:(1)当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-2(n-1),易证an-an-1=2(n≥2,n∈N*),于是可证得:{an}是等差数列;
(2)由(1)得an=2n-1,Sn=n2,易证an•an+1=(2n-1)•(2n+1)=4n2-1<4Sn
(3)易求得
1
Sn
4
anan+1
=
2(an+1-an)
anan+1
=2(
1
an
-
1
an+1
)
,从而可证得
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
5
3
解答: 证明:(1)当n≥2,n∈N*时,由已知Sn=nan-n(n-1)得Sn-1=(n-1)an-1-(n-1)(n-2).
两式相减得Sn-Sn-1=nan-(n-1)an-1-2(n-1).又Sn-Sn-1=an,所以(n-1)an-(n-1)an-1=2(n-1).
即an-an-1=2(n≥2,n∈N*).所以{an}是以1为首项、2为公差的等差数列.(4分)
(2)由(1)得an=2n-1,Sn=n2,n∈N*
所以an•an+1=(2n-1)•(2n+1)=4n2-1<4Sn;  (8分)
(3)由(2)得
1
Sn
4
anan+1
=
2(an+1-an)
anan+1
=2(
1
an
-
1
an+1
)

所以
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
≤1+2[(
1
a2
-
1
a3
)+(
1
a3
-
1
a4
)+…+(
1
an
-
1
an+1
)]

=1+2(
1
a2
-
1
an+1
)=1+2(
1
3
-
1
2n+1
)<1+
2
3
=
5
3
.(12分)
点评:本题考查数列的求和,着重考查运算、推理与证明的能力,突出考查等差关系的确定与裂项法求和的综合应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,P为椭圆上任意一点,当∠F1PF2取最大值时的余弦值为-
1
49
,则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中假命题是(  )
A、样本方差反映了样本数据与样本平均值的偏离程度
B、从匀速传递的新产品生产流水线上,质检员每10分钟从中抽取一件新产品进行某项指标检测,这样的抽样是分层抽样
C、在回归分析模型中,残差平方和越小,说明模型的拟合效果越好
D、设随机变量X服从正态分布N(0,1),若P(x>1)=p,则P(-1<x<0)=
1
2
-p

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的侧棱长与底面边长都相等,点E是PB的中点,则异面直线AE与PD所成角的余弦值为(  )
A、
1
3
B、
2
3
C、
3
3
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

直线m,n均不在平面α,β内,给出下列命题:
①若m∥n,n∥α,则m∥α;
②若m∥β,α∥β,则m∥α;
③若m⊥n,n⊥α,则m∥α;
④若m⊥β,α⊥β,则m∥α;
则其中正确命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=3,计算:
(1)
sinα-cosα
cosα+sinα

(2)sinα•cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,且满足S4=12,S6=30.
(Ⅰ)求an
(Ⅱ)设数列{bn}满足bn+1=2bn-an且b1=4,
(i)证明:数列{bn-2n}是等比数列,并求{bn}的通项;
(ii)当n≥2时,比较bn-1•bn+1与bn2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等差数列,且各项均为非零实数,sn是数列{an}的前n项和.
(1)若等式
1
a1a2
+
1
a2a3
+…+
1
anan+1
=
kn+b
a1an+1
对任意n(n∈N+)恒成立,其中k、b是常数,求k、b的值;
(2)对于给定的正整数n(n>1)和正数m,数列{an}满足条件a12+a(n+12≤m,求sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2-ax+a)ex-x2,a∈R.
(Ⅰ)设函数g(x)=
f(x)
x
,当a=0时.讨论g(x)的单调性.
(Ⅱ)若函数f(x)在x=0处取得极小值,求a的取值范围.

查看答案和解析>>

同步练习册答案