精英家教网 > 高中数学 > 题目详情

【题目】已知曲线的极坐标方程为,倾斜角为的直线过点.

(1)求曲线的直角坐标方程和直线的参数方程;

(2)设,是过点且关于直线对称的两条直线,交于两点,交于, 两点. 求证:.

【答案】(1)见解析;(2)见解析

【解析】

(1)由极坐标方程与直角坐标方程的互换公式,可直接得到直角坐标方程;由直线的倾斜角和定点可直接写出参数方程;

(2)将直线的参数方程代入抛物线方程,结合韦达定理可直接写出,进而可求出结果.

(1)由可得,所以即为曲线E的直角坐标方程;

因为直线倾斜角为,且过点,所以其参数方程为:

(t为参数)

(2),关于直线对称,

,的倾斜角互补,设的倾斜角为,则的倾斜角为,

把直线(t为参数)代入,

并整理得:

根据韦达定理,,即.

同理即.

,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】房产税改革向前推进之路,虽历经坎坷,但步伐从未停歇,作为未来的新增税种,十二届全国人大常委会已将房产税立法正式列入五年立法规划。某市税务机关为了进一步了解民众对政府择机出台房产税的认同情况,随机抽取了一小区住户进行调查,各户人均月收入(单位:千元)的频数分布及赞成出台房产税的户数如下表:

人均月收入

频数

6

10

13

11

8

2

不赞成户数

5

9

12

9

4

1

若将小区人均月收入不低于7.5千元的住户称为“高收入户”,人均月收入低于7.5千元的住户称为“非高收入户”,有列联表:

非高收入户

高收入户

总计

不赞成

赞成

总计

(1)根据已知条件完成如图所给的列联表,并说明能否在犯错误的概率不超过0.005的前提下认为“收入的高低”与“赞成出台房产税”有关.

(2)现从月收入在的住户中随机抽取两户,求所抽取的两户都不赞成出台房产税的概率;

附:临界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当m>0时,若对于区间[1,2]上的任意两个实数x1,x2,且x1<x2,都有,成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,雾霾日趋严重,雾霾的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律,每生产该型号空气净化器(百台),其总成本为(万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入(万元)满足,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:

(1)求利润函数的解析式(利润=销售收入-总成本);

(2)工厂生产多少百台产品时,可使利润最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断的奇偶性并证明;

2)若,是否存在,使的值域为?若存在,求出此时的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,当时,,且对任意的实数,等式恒成立,若数列满足,且,则的值为(

A.4037B.4038C.4027D.4028

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的最小正周期;

2)求的单调增区间;

3)若,求的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的方程为,直线的方程为,点在直线上.

(1)若点的坐标为,过点作圆的割线交圆两点,当 时,求直线的方程;.

(2)若过点作圆的切线,切点为,求证:经过四点的圆必过定点,并求出所有定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一年一度的“双十一”网络购物节来了,某工厂网上直营店决定对某商品进行一次评估.该商品原来每件售价为20元,年销售7万件.为了抓住“双十一”的大好商机,扩大该商品的影响力,提高年销售量.工厂决定引进新生产线对该商品进行技术.升级,并提高定价到.新生产线投入需要固定成本万元,变化成本万元,另外需要万元作为新媒体宣传费用.问:当该商品技术升级后的销售量至少应达到多少万件时,才可能使升级后的年销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.

查看答案和解析>>

同步练习册答案