精英家教网 > 高中数学 > 题目详情

在△ABC中,角A、B、C的对边分别为a、b、c.数学公式=(bcosC,-1),数学公式=((c-3a)cosB,1),且数学公式数学公式,则cosB值为


  1. A.
    数学公式
  2. B.
    -数学公式
  3. C.
    数学公式
  4. D.
    -数学公式
A
分析:由,结合向量平行的坐标表示可得bcosC-(-1)×(c-3a)cosB=0,结合正弦定理及两角和的正弦公式可求cosB
解答:∵=(bcosC,-1),=((c-3a)cosB,1),且
∴bcosC-(-1)×(c-3a)cosB=0
即bcosC+(c-3a)cosB=0
由正弦定理可得,sinBcosC+(sinCcosB-3sinAcosB)=0
∴sinBcosC+sinCcosB-3sinAcosB=0
∴sin(B+C)=3sinAcosB
即sinA=3sinAcosB
∵sinA≠0
∴cosB=
故选A
点评:本题以向量的平行的坐标表示为载体,主要考查了正弦定理、两角和的正弦公式的综合应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案