【题目】函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
)(x∈R)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式并求函数f(x)的单调递增区间;
(Ⅱ)求函数f(x)的最小值并指出函数f(x)取最小值时相应的x的值.![]()
【答案】解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
)(x∈R)的部分图象可得A=2,最小正周期T=2(
)=π,得ω=2,可得函数f(x)的解析式为f(x)=2sin(2x+φ),
又f(
)=2,
所以sin(
+φ)=1,
由于|φ|<
,可得φ=
,
所以函数f(x)的解析式为:f(x)=2sin(2x+
)
由于2kπ﹣
≤2x+
≤2kπ+
,可得kπ﹣
≤x≤kπ+
(k∈Z),
所以函数f(x)的单调递增区间为:[kπ﹣
,kπ+
](k∈Z),
(Ⅱ)函数f(x)的最小值为﹣2,
函数f(x)取最小值﹣2时,有2x+
=2kπ﹣
(k∈Z),可得:x=kπ﹣
(k∈Z),
所以函数f(x)取最小值﹣2时相应的x的值是:x=kπ﹣
(k∈Z)
【解析】(Ⅰ)由图形可确定A,周期T,从而可得ω的值,再由f(
)=2,得2×
+φ=
+2kπ(k∈Z),进一步结合条件可得φ的值,即可解得f(x)的解析式,由2kπ﹣
≤2x+
≤2kπ+
,可得函数f(x)的单调递增区间;(Ⅱ)由正弦函数的图象和性质,由2x+
=2kπ﹣
(k∈Z),即可解得函数f(x)的最小值并指出函数f(x)取最小值时相应的x的值.
【考点精析】关于本题考查的三角函数的最值,需要了解函数
,当
时,取得最小值为
;当
时,取得最大值为
,则
,
,
才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1 , BC的中点. ![]()
(1)求证:AB⊥C1F;
(2)求证:C1F∥平面ABE;
(3)求三棱锥E﹣ABC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图中的信息,回答下列问题: ![]()
(Ⅰ)补全频率分布直方图;
(Ⅱ)估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段[120,130)内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn(n∈N*),a3=5,S10=100.
(1)求数列{an}的通项公式;
(2)设bn=2
+2n求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
),且对任意
,都有
.
(Ⅰ)用含
的表达式表示
;
(Ⅱ)若
存在两个极值点
,
,且
,求出
的取值范围,并证明
;
(Ⅲ)在(Ⅱ)的条件下,判断
零点的个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是各项均不相等的数列,
为它的前
项和,满足
.
(1)若
,且
成等差数列,求
的值;
(2)若
的各项均不相等,问当且仅当
为何值时,
成等差数列?试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.
(Ⅰ)证明:A=2B
(Ⅱ)若△ABC的面积S=
,求角A的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设入射光线沿直线y=2x+1射向直线y=x,则被y=x反射后,反射光线所在的直线方程是( )
A.x﹣2y﹣1=0
B.x﹣2y+1=0
C.3x﹣2y+1=0
D.x+2y+3=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,其中
是自然对数的底数.
(Ⅰ)判断函数
在
内零点的个数,并说明理由;
(Ⅱ)
,
,使得不等式
成立,试求实数
的取值范围;
(Ⅲ)若
,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com