【题目】已知函数(, ),且对任意,都有.
(Ⅰ)用含的表达式表示;
(Ⅱ)若存在两个极值点, ,且,求出的取值范围,并证明;
(Ⅲ)在(Ⅱ)的条件下,判断零点的个数,并说明理由.
【答案】(1)(2)见解析(3)见解析
【解析】试题分析:利用赋值法求出关系,求函数导数,要求函数有两个极值点,只需在内有两个实根,利用一元二次方程的根的分布求出的取值范围,再根据函数图象和极值的大小判断零点的个数.
试题解析:(Ⅰ)根据题意:令,可得,
所以,
经验证,可得当时,对任意,都有,
所以.
(Ⅱ)由(Ⅰ)可知,且,
所以 ,
令,要使存在两个极值点, ,则须有有两个不相等的正数根,所以
或
解得或无解,所以的取值范围,可得,
由题意知 ,
令 ,则 .
而当时, ,即,
所以在上单调递减,
所以
即时, .
(Ⅲ)因为 , .
令得, .
由(Ⅱ)知时, 的对称轴, , ,所以.
又,可得,此时, 在上单调递减, 上单调递增, 上单调递减,所以 最多只有三个不同的零点.
又因为,所以在上递增,即时, 恒成立.
根据(2)可知且,所以,即,所以,使得.
由,得,又, ,
所以恰有三个不同的零点: ,1, .
综上所述, 恰有三个不同的零点.
科目:高中数学 来源: 题型:
【题目】下列是有关三角形ABC的几个命题,
①若tanA+tanB+tanC>0,则△ABC是锐角三角形;
②若sin2A=sin2B,则△ABC是等腰三角形;
③若( + ) =0,则△ABC是等腰三角形;
④若cosA=sinB,则△ABC是直角三角形;
其中正确命题的个数是( )
A..1
B..2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小华准备购买一台售价为5000元的电脑,采用分期付款方式,并在一年内将款全部付清,商场提出的 付款方式为:购买后二个月第一次付款,再过二个月第二次付款…,购买后12个月第六次付款,每次付
款金额相同,约定月利率为0.8%每月利息按复利计算.求小华每期付款的金额是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )(x∈R)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式并求函数f(x)的单调递增区间;
(Ⅱ)求函数f(x)的最小值并指出函数f(x)取最小值时相应的x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,O是坐标原点,两定点A,B满足| |=| |= =2,则点集{P| =x +y ,|x|+|y|≤1,x,y∈R}所表示的区域的面积是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在区间[﹣1,1]上的奇函数,且f(﹣1)=1,若m,n∈[﹣1,1],m+n≠0时,有 <0.
(1)解不等式f(x+ )<f(1﹣x);
(2)若f(x)≤t2﹣2at+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成上面的列联表,若按的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为.若每次抽取的结果是相互独立的,求分布列,期望和方差.
附:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com