精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,已知B=45°,D是BC上一点,AD=5,AC=7,DC=3,求AB的长.

【答案】解:法一:在△ADC中,由余弦定理得: ∵∠ADC∈(0,π),∴∠ADC=120°,
∴∠ADB=180°﹣∠ADC=60°
在△ABD中,由正弦定理得:
法二:在△ADC中,由余弦定理得
∵∠ACD∈(0,π),∴
在△ABC中,由正弦定理得:
故答案为:
【解析】法一:先在△ADC中用余弦定理求出∠ADC的余弦值,进而求出∠ADC,再根据互补求出∠ADB,然后在△ABD中用正弦定理就可求出AB的长; 法二:先在△ADC中用余弦定理求出∠ACD的余弦值,在根据同角三角函数关系求出∠ACD的正弦,然后在△ABC中用正弦定理就可求出AB的长.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,且点 在该椭圆上
(1)求椭圆C的方程;
(2)过椭圆C的左焦点F1的直线l与椭圆相交于A,B两点,若△AOB的面积为 ,求圆心在原点O且与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下四种变换方式:

向左平移个单位长度,再将每个点的横坐标缩短为原来的;

向右平移个单位长度,再将每个点的横坐标缩短为原来的;

每个点的横坐标缩短为原来的,向右平移个单位长度;

每个点的横坐标缩短为原来的,向左平移个单位长度;

其中能将的图像变换成函数的图像的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图中的信息,回答下列问题:
(Ⅰ)补全频率分布直方图;
(Ⅱ)估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段[120,130)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn(n∈N*),a3=5,S10=100.
(1)求数列{an}的通项公式;
(2)设bn=2 +2n求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ),且对任意,都有.

(Ⅰ)用含的表达式表示

(Ⅱ)若存在两个极值点 ,且,求出的取值范围,并证明

(Ⅲ)在(Ⅱ)的条件下,判断零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.
(Ⅰ)证明:A=2B
(Ⅱ)若△ABC的面积S= ,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取5次,记录如下:

88

89

92

90

91

84

88

96

89

93

(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理由.(用样本数据特征来说明.)

查看答案和解析>>

同步练习册答案