【题目】已知椭圆C: =1(a>b>0)的离心率为 ,且点 在该椭圆上
(1)求椭圆C的方程;
(2)过椭圆C的左焦点F1的直线l与椭圆相交于A,B两点,若△AOB的面积为 ,求圆心在原点O且与直线l相切的圆的方程.
【答案】
(1)解:由题意, ,
∴a=2,b= ,c=1,
∴椭圆C的方程为
(2)解:当直线l⊥x轴时,△AOB的面积为 ,不符合题意;
当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1),k≠0
代入椭圆方程,消去y,得(3+4k2)x2+8k2x+4k2﹣12=0联立,韦达定理,△>0显然成立
设A(x1,y1),B(x2,y2),则
x1+x2=﹣ ,x1x2=
∴
∴ ,即17k4+k2﹣18=0,k2=1
∴ ,∴圆的方程为
【解析】(1)设出椭圆的标准方程,根据离心率求得a和c关系,进而根据a2=b2+c2 , 求得a和b的关系,把点C坐标代入椭圆方程求得a,进而求得b,则椭圆方程可得.(2)先看当l与x轴垂直时,可求得A,B的坐标,进而求得三角形AOB的坐标,不符合题意;再看直线l斜率存在时,设出直线方程,与椭圆方程联立消去y,设A(x1 , y1),B(x2 , y2),进而求得x1+x2和x1x2的表达式,进而表示出|AB|,进而求得圆的半径后表示出三角形AOB的面积,求得k,进而求得圆的半径,则圆的方程可得.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥A﹣BCD中,BC=DC=AB=AD= ,BD=2,平面ABD⊥平面BCD,O为BD中点,点P,Q分别为线段AO,BC上的动点(不含端点),且AP=CQ,则三棱锥P﹣QCO体积的最大值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若椭圆 + =1的焦点在x轴上,过点(1, )作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列是有关三角形ABC的几个命题,
①若tanA+tanB+tanC>0,则△ABC是锐角三角形;
②若sin2A=sin2B,则△ABC是等腰三角形;
③若( + ) =0,则△ABC是等腰三角形;
④若cosA=sinB,则△ABC是直角三角形;
其中正确命题的个数是( )
A..1
B..2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分. 求:
(1)直线l的方程;
(2)以O为圆心且被l截得的弦长为 的圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com