【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图中的信息,回答下列问题:
(Ⅰ)补全频率分布直方图;
(Ⅱ)估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段[120,130)内的概率.
【答案】解:(Ⅰ)分数在[120,130)内的频率1﹣(0.1+0.15+0.15+0.25+0.05)=1﹣0.7=0.3, 因此补充的长方形的高为0.03,补全频率分布直方图为:
(Ⅱ)估计平均分为
(Ⅲ)由题意,[110,120)分数段的人数与[120,130)分数段的人数之比为1:2,
用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,
需在[110,120)分数段内抽取2人成绩,分别记为m,n,
在[120,130)分数段内抽取4人成绩,分别记为a,b,c,d,
设“从6个样本中任取2人成绩,至多有1人成绩在分数段[120,130)内”为事件A,
则基本事件共有{(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),
(n,b),(n,c),(n,d),(a,b),(a,c),
(a,d),(b,c),(b,d),(c,d)},共15个.
事件A包含的基本事件有{(m,n),(m,a),(m,b),
(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)}共9个.
∴P(A)= =
【解析】(Ⅰ)求出分数在[120,130)内的频率,补充的长方形的高,由此能补全频率分布直方图.(Ⅱ)利用频率分布直方图能估计平均分.(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,需在[110,120)分数段内抽取2人成绩,分别记为m,n,在[120,130)分数段内抽取4人成绩,分别记为a,b,c,d,由此利用列举法能求出至多有1人成绩在分数段[120,130)内的概率.
科目:高中数学 来源: 题型:
【题目】已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分. 求:
(1)直线l的方程;
(2)以O为圆心且被l截得的弦长为 的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )(x∈R)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式并求函数f(x)的单调递增区间;
(Ⅱ)求函数f(x)的最小值并指出函数f(x)取最小值时相应的x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2 ,求直线l的方程
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2 , 它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com