精英家教网 > 高中数学 > 题目详情
函数y=sin
x
3
cos
x
3
的最小正周期为
 
考点:三角函数的周期性及其求法
专题:三角函数的图像与性质
分析:由条件利用二倍角公式、函数y=Asin(ωx+φ)的周期性,可得结论.
解答: 解:∵函数y=sin
x
3
cos
x
3
=
1
2
sin
2
3
x,∴该函数的最小正周期为
2
3
=3π,
故答案为:3π.
点评:本题主要考查二倍角公式、函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为
ω
,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cos(
π
6
-α)=m(|m|≤1),求sin(
3
-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若∠α的终边落在第三象限,则
cosα
1-sin2α
+
2sinα
1-cos2α
的值为(  )
A、3B、-3C、1D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-
1
2
x2-3x-
5
2
的值域是(  )
A、{y|y≥-
5
2
}
B、{y|y≤-
5
2
}
C、{y|y≥2}
D、{y|y≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体三视图如图所示,求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆C:
y2
a2
+
x2
2
=1(a>
2
)的离心率
2
2
,其两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足
PF1
PF2
=1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求椭圆C的方程;
(2)求P点坐标;
(3)当直线PB的斜率为
2
2
时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距为2,且过点P(
2
3
2
6
3
).F1,F2是左右两个焦点,过F1的直线l交椭圆于A,B两点,若△ABF2的面积为
24
13

(1)求椭圆的方程;
(2)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3(2+x),g(x)=log3(2-x)
(1)求函数y=f(x)-g(x)的定义域;
(2)求使f(x)≥g(x)成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(wx+φ),x∈R(其中A>0,w>0,0<φ<
π
2
)的图象与x轴的交点中,相邻2个交点之间的距离为
π
2
,且图象上一个最低点为M(
3
,-2).求:
(1)函数f(x)的解析式;
(2)当x∈[
π
3
π
2
),求f(x)的值域.

查看答案和解析>>

同步练习册答案