精英家教网 > 高中数学 > 题目详情
20.若函数f(x)=1-2x,g[f(x)]=$\frac{1-{x}^{2}}{{x}^{2}}$(x≠0),则g(3)=(  )
A.1B.0C.15D.30

分析 由f(x)=1-2x=3,得x=-1,从而g(3)=g[f(-1)],由此能求出结果.

解答 解:∵函数f(x)=1-2x,g[f(x)]=$\frac{1-{x}^{2}}{{x}^{2}}$(x≠0),
∴由f(x)=1-2x=3,得x=-1,
∴g(3)=g[f(-1)]=$\frac{1-(-1)^{2}}{(-1)^{2}}$=0.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.对等式sin(α+β)=sinα+sinβ的认识正确的是(  )
A.对于任意的角α、β都成立B.只对α、β取几个特殊值时成立
C.对于任意的角α、β都不成立D.有无限个α、β的值使等式成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l的参数方程为$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2(1+2sin2θ)=12,且曲线C的左焦点F在直线l上.
(I)求实数m和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C交于A,B两点,求$\frac{1}{|AF|}$+$\frac{1}{|BF|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\frac{1}{2}$x2-2ax-aln(2x)在(1,2)上单调递减,则a的取值范围是[$\frac{4}{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过点(2,4)作函数y=x3-2x的切线,则切线方程是y=10x-16或y=x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(1)证明:AB⊥A1C;
(2)若AB=CB=2,A1C=$\sqrt{6}$,
(理科做)求二面角B-AC-A1的余弦值.
(文科做)求三棱锥A-CA1B的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,平面α截三棱锥P-ABC得截面DEFG,设PA∥α,BC∥α.
(1)求证:四边形DEFG为平行四边形;
(2)设PA=6,BC=4,PA与BC所成的角为600,求四边形DEFG面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④27,54,81,128,135,162,189,216,243,270;
关于上述样本的下列结论中,可能为系统抽样的是①③;可能为分层抽样的是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\overrightarrow{BA}$•$\overrightarrow{BC}$=1.
(1)求证:∠A=∠B;
(2)求边长c的值;
(3)若|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=6,求△ABC的面积.

查看答案和解析>>

同步练习册答案