精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,F1,F2分别是椭圆的左、右焦点,过点F2与x轴不垂直的直线l交椭圆于A、B两点,则△ABF1的周长为4
2

(1)求椭圆的方程;
(2)若C(
1
3
,0),使得|AC|=|BC|,求直线l的方程.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由已知条件推导出
c
a
=
2
2
4a=4
2
,由此能求出椭圆方程.
(2)设直线AB的方程为x=ny+1,联立
x=ny+1
x2
2
+y2=1
,得(2+n2)y2+2ny-1=0,设A(x1,y1),B(x2,y2),由C(
1
3
,0)使得|AC|=|BC|,推导出
1
n
=
y1-y2
x1-x2
=
4
3n
-
n
3
,由此能求出直线l的方程.
解答: 解:(1)∵椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2

F1,F2分别是椭圆的左、右焦点,
过点F2与x轴不垂直的直线l交椭圆于A、B两点,△ABF1的周长为4
2

c
a
=
2
2
4a=4
2
,∴a=
2
,c=1,∴b=1,
∴椭圆方程为
x2
2
+y2=1

(2)∵过点F2(1,0)与x轴不垂直的直线l交椭圆于A、B两点,
∴设直线AB的方程为x=ny+1,
联立
x=ny+1
x2
2
+y2=1
,得(2+n2)y2+2ny-1=0,
△=4n2+4(2+n2)>0,
设A(x1,y1),B(x2,y2),则y1+y2=
-2n
2+n2
,y1y2=
-1
2+n2

∴x1+x2=n(y1+y2)+2=
-2n2
2+n2
+2

∵C(
1
3
,0)使得|AC|=|BC|,
(x1-
1
3
)2+y12
=
(x2-
1
3
)2+y22

x12-
2
3
x1+y12=x22-
2
3
x2+y22

整理,得(x1+x2-
2
3
)(x1-x2)+(y1+y2)(y1-y2)=0,
∴k=
y1-y2
x1-x2
=
x1+x2-
2
3
-(y1+y2)
=
-2n2
2+n2
+2-
2
3
2n
2+n2
=
4
3n
-
n
3

∵k=
1
n
,∴
1
n
=
4
3n
-
n
3
,解得n=±1,
∴直线l的方程为x=y+1或x=-y+1,
即直线l的方程为x-y-1=0或x+y-1=0.
点评:本题考查椭圆方程的求法,考查直线方程的求法,解题时要认真审题,注意两点间距离公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,抛物线y2=4x的焦点为椭圆E的一个焦点,直线y=x+
3
上到焦点F1,F2距离之和最小的点P恰好在椭圆E上.
(1)求椭圆E的方程;
(2)如图,过点S(0,-
1
3
)的动直线l交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的对称轴为坐标轴,且经过两点(
2
,1),(2,
3
3
)

(1)求椭圆C的方程;
(2)过点(-1,0)的动直线l与椭圆相交于A、B两点,在x轴上是否存在点M,使
MA
MB
为常数?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x=my+1过椭圆C:,
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F,抛物线x2=4
3
y
的焦点为椭圆C的上顶点,且直线l交椭圆C于A,B两点.
(1)求椭圆C的方程;
(2)若直线l交y轴于点M,且
MA
=λ1
AF
MB
=λ2
BF
,当m变化时,λ12的值是否为定值?若是,求出这个定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆过定点A(0,2),且在x轴上截得的弦MN的长为4.
(1)求动圆圆心的轨迹C的方程;
(2)过点A(0,2)作一条直线与曲线C交于E,F两点,过E,F分别作曲线C的切线,两切线交于P点,当|PE|•|PF|最小时,求直线EF的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2-c,且-4≤f(1)≤-1,-1≤f(2)≤5,求f(4)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC三个内角A,B,C的对边分别为a,b,c,面积为S,acosC+
3
csinA-b-c=0.
(Ⅰ)求角A的值;
(Ⅱ)若a=
3
,求
3
3
S+
3
cosBcosC取最大值时S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C的焦点在y轴上,离心率为
2
,其一个顶点的坐标是(0,1).
(Ⅰ)求双曲线C的标准方程;
(Ⅱ)若直线l与该双曲线交于A、B两点,且A、B的中点为(2,3),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图的程序框图,如果输入i=6,则输出的S值为
 

查看答案和解析>>

同步练习册答案