精英家教网 > 高中数学 > 题目详情
(12分)如图,在梯形中,的中点,将沿折起,使点到点的位置,使二面角的大小为
(1)求证:
(2)求直线与平面所成角的正弦值
(1)证明见解析。
(2)


如图建系,则
  (1)
 (6分)
(2)设直线所成的角为 
则直线所成角的正弦值为 (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,平面,其垂足落在直线上.
(Ⅰ)求证:
(Ⅱ)若的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,
M为AP的中点.
(Ⅰ)求证:DM∥平面PCB;                      
(Ⅱ)求直线AD与PB所成角;
(Ⅲ)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点,PE⊥EC.
已知PD=,CD=2,AE=,
(1)求证:平面PED⊥平面PEC
(2)求二面角E-PC-D的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,平面上的点.

(Ⅰ)求证:
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,的中点,上一点,且
(1)求证: 平面
(2)求三棱锥的体积;
(3)试在上找一点,使得平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=PA=a,点O、D分别是AC、PC的中点,OP⊥底面ABC。

(1)求三棱锥P-ABC的体积;
(2)求异面直线PA与BD所成角余弦值的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知菱形的顶点在椭圆上,对角线所在直线的斜率为1.
(Ⅰ)当直线过点时,求直线的方程;
(Ⅱ)当时,求菱形面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(I)求异面直线MN和CD1所成的角;
(II)证明:EF//平面B1CD1.

查看答案和解析>>

同步练习册答案