【题目】已知函数
,
.
(1)若函数
在区间
上单调递减,试探究函数
在区间
上的单调性;
(2)证明:方程
在
上有且仅有两解.
【答案】(1)单调递减.(2)见解析
【解析】
(1)对
求导,
,再对
求导,可得
递减区间,可得
的取值范围,可得函数
在区间
上的单调性;
(2)令
,因为
,可令
,对其求导,可得
的单调性和零点,记正零点为
,可得
的性质及
的表达式,将
满足的条件代入
,综合分析可得证明.
解:(1)依题意,
,由
,
故函数
的递减区间为
;而当
时,![]()
故若函数
在区间
上单调递减,
函数
在区间
上也是单调递减.
(2)令
,
因为
,由
得
,
令
,则
,
因为
,且
,所以
必有两个异号的零点,记正零点为
,
则
时,
,
单调递减;
时,
,
单调递增,若
在
上恰有两个零点,则
,
由
得
,
所以
,又因为
的对称轴为
,
所以
,
所以
,所以
,
又
,
设
中的较大数为
,则
,
故当
时,方程
在
上有且仅有两解.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数).以
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
(
),将曲线
向左平移2个单位长度得到曲线
.
(1)求曲线
的普通方程和极坐标方程;
(2)设直线
与曲线
交于
两点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(k为常数,
且
).
(1)在下列条件中选择一个________使数列
是等比数列,说明理由;
①数列
是首项为2,公比为2的等比数列;
②数列
是首项为4,公差为2的等差数列;
③数列
是首项为2,公差为2的等差数列的前n项和构成的数列.
(2)在(1)的条件下,当
时,设
,求数列
的前n项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为:
(
为参数),以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为:
.
(Ⅰ)求直线
与曲线
公共点的极坐标;
(Ⅱ)设过点
的直线
交曲线
于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,离心率为
的椭圆
的左顶点为
,过原点
的直线(与坐标轴不重合)与椭圆
交于
两点,直线
分别与
轴交于
,
两点.若直线
斜率为
时,
.
(1)求椭圆
的标准方程;
(2)试问以
为直径的圆是否经过定点(与直线
的斜率无关)?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大约在20世纪30年代,世界上许多国家都流传着这样一个题目:任取一个正整数
,如果它是偶数,则除以2;如果它是奇数,则将它乘以3加1,这样反复运算,最后结果必然是1.这个题目在东方被称为“角谷猜想”,世界一流的大数学家都被其卷入其中,用尽了各种方法,甚至动用了最先进的电子计算机,验算到对700亿以内的自然数上述结论均为正确的,但却给不出一般性的证明.例如取
,则要想算出结果1,共需要经过的运算步数是( )
A.9B.10C.11D.12
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com