精英家教网 > 高中数学 > 题目详情

已知函数时都取得极值

(1)求的值与函数的单调区间

(2)若对,不等式恒成立,求的取值范围。

 

【答案】

解:⑴,增区间 减区间

 。

 

【解析】本试题主要是考查了导数在研究函数极值和单调性中的运用,以及不等式的恒成立问题的综合运用。

(1)因为函数时都取得极值,因此在这两点处的导数值为零的,得到参数a,b的值。并求解导数大于零或者小于零的区间。

(2)要满足对,不等式恒成立,只需要求解函数在给定区间的最大值小于即可。

解:⑴

      增区间 减区间     -------4分

⑵∵对,不等式恒成立,

由(1)得   

   即                 -------10分

 

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年广东省梅州市高三上学期10月月考理科数学卷 题型:解答题

(满分14分)已知函数时都取得极值

(1)求的值与函数的单调区间

(2)若对,不等式恒成立,求的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2013届海南省高二第一学期期末考试文科数学 题型:解答题

(本题12分)已知函数时都取得极值

(1)求的值 (2)若对,不等式恒成立,求的取值范围 

 

查看答案和解析>>

科目:高中数学 来源:2013届浙江省永嘉县普高联合体高二第二学期第一次月考文科数学试卷 题型:解答题

已知函数时都取得极值。

(1)求的值及函数的单调区间;

(2)若对恒成立,求的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2010年河北省高二12月月考数学卷doc 题型:解答题

(文)(本小题满分12分)

已知函数时都取得极值

(1)求的值与函数的单调区间

(2)若对,不等式恒成立,求的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2012届河北冀州中学高二年级下学期第三次月考题(文) 题型:解答题

已知函数时都取得极值.

(1)求的值及函数的单调区间;

(2)若对,不等式恒成立,求的取值范围.

 

查看答案和解析>>

同步练习册答案