精英家教网 > 高中数学 > 题目详情

已知椭圆+y2=1的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点.

(1)当直线AM的斜率为1时,求点M的坐标;

(2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.

 

(1)(2)

【解析】(1)直线AM的斜率为1时,直线AM为y=x+2,代入椭圆方程并化简得5x2+16x+12=0,解之得x1=-2,x2=-,∴点M的坐标为.

(2)设直线AM的斜率为k,则AM为y=k(x+2),

化简得(1+4k2)x2+16k2x+16k2-4=0.

∵此方程有一根为-2,∴xM=,同理可得xN=

由(1)知若存在定点,则此点必为P.

∵kMP=

同理可计算得kPN=.∴直线MN过x轴上的一定点P

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:解答题

已知圆C:x2+(y-3)2=4,一动直线l过A(-1,0)与圆C相交于P、Q两点,

M是PQ中点,l与直线m:x+3y+6=0相交于N.

(1)求证:当l与m垂直时,l必过圆心C;

(2)当PQ=2时,求直线l的方程;

(3)探索·是否与直线l的倾斜角有关?若无关,请求出其值;若有关,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第3课时练习卷(解析版) 题型:填空题

设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的________条件.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:解答题

已知椭圆C的方程为=1(a>b>0),双曲线=1的两条渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1.又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A、B(如图).

(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;

(2)当=λ,求λ的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:填空题

已知抛物线y2=2px(p≠0)及定点A(a,b),B(-a,0),ab≠0,b2≠2pa,M是抛物线上的点.设直线AM、BM与抛物线的另一个交点分别为M1、M2,当M变动时,直线M1M2恒过一个定点,此定点坐标为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:解答题

如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.

(1)求椭圆C的方程;

(2)求△ABP面积取最大值时直线l的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第10课时练习卷(解析版) 题型:解答题

已知椭圆=1(a>b>0)的离心率为,短轴的一个端点为M(0,1),直线l:y=kx-与椭圆相交于不同的两点A、B.

(1)若AB=,求k的值;

(2)求证:不论k取何值,以AB为直径的圆恒过点M.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第10课时练习卷(解析版) 题型:填空题

已知双曲线方程是x2-=1,过定点P(2,1)作直线交双曲线于P1、P2两点,并使P(2,1)为P1P2的中点,则此直线方程是____________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年陕西西工大附中高三上学期第四次适应性训练文数学卷(解析版) 题型:选择题

等差数列的前n项和为,若,则等于( )

A.52 B.54 C.56 D.58

 

查看答案和解析>>

同步练习册答案