精英家教网 > 高中数学 > 题目详情
如图所示,已知△ABC的三边AB、BC、AC分别与平面α相交于E、F、G,求证:E、F、G三点共线.

证明:∵AB∩α=E,BC∩α=F,

连结EF,则EFα.

又EF平面ABC,

∴α∩平面ABC=EF.

又∵AC∩α=G,

∴G∈α,G∈平面ABC,

即G为平面α与平面ABC的公共点.

∴G∈EF.

因此,E、F、G三点共线.

小结:本题是证明三点共线问题.证明多点共线,通常是过其中两点作一直线,然后证明其他的点在这条直线上,或者根据已知条件设法证明这些点在两个相交平面内,然后根据公理得到这些点在两个平面的交线上.本题是把“几点共线”问题转化为“点在直线上”的问题来加以解决的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、如图所示,已知AB⊥平面BCD,BC⊥CD,则图中互相垂直的平面有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知AB⊥平面BCD,M、N分别是AC、AD的中点,BC⊥CD.
(1)求证:MN∥平面BCD;
(2)求证:平面BCD⊥平面ABC;
(3)若AB=1,BC=
3
,求直线AC与平面BCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

A:如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于点D,BC=4cm,
(1)试判断OD与AC的关系;
(2)求OD的长;
(3)若2sinA-1=0,求⊙O的直径.
B:(选修4-4)已知直线l经过点P(1,1),倾斜角α=
4

(1)写出直线l的参数方程;
(2)设l与圆x2+y2=4相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

一次机器人足球比赛中,甲队1号机器人由点A开始作匀速直线运动,到达点B时,发现足球在点D处正以2倍于自己的速度向点A作匀速直线滚动.如图所示,已知AB=4
2
dm,AD=17dm,∠BAC=45°
.若忽略机器人原地旋转所需的时间,则该机器人最快可在何处截住足球?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知
AB
=2
BC
OA
=
a
OB
=
b
OC
=
c
,则
c
=
 
.(用
a
b
表示)

查看答案和解析>>

同步练习册答案