精英家教网 > 高中数学 > 题目详情
1.△ABC中,AB=3,BC=4,B=60°,则AC=$\sqrt{13}$.

分析 由已知利用余弦定理即可求得AC的值.

解答 解:∵AB=3,BC=4,B=60°,
∴由余弦定理可得:AC=$\sqrt{A{B}^{2}+B{C}^{2}-2AB•AC•cosB}$=$\sqrt{9+16-2×3×4×\frac{1}{2}}$=$\sqrt{13}$.
故答案为:$\sqrt{13}$.

点评 本题考查了余弦定理在解三角形中的简单应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建设一仓库,设AB=ykm,并在公路北侧建造边长为xkm的正方形无顶中转站CDEF(其中EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且∠ABC=60°..
(1)求y关于x的函数解析式,并求出定义域;
(2)如果中转站四堵围墙造价为10万元/km,两条道路造价为30万元/km,问:x取何值时,该公司建设中转站围墙和两条道路总造价M最低.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设Sn是公差不为0的等差数列{an}的前n项和,若a1,a2,a4成等比数列,则$\frac{S_4}{S_2}$的值为$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设无穷等差数列{an}的前n项和为Sn,已知a1=1,S3=12.
(1)求a24与S7的值;
(2)已知m、n均为正整数,满足am=Sn.试求所有n的值构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.二项式(9x+$\frac{1}{3\sqrt{x}}$)18的展开式的常数项为18564(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若数列{$\frac{1}{n(n+1)}$}的前n项和为Sn,若Sn•Sn+1=$\frac{3}{4}$,则正整数n的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}的各项均为正数,且满足a1=1,$\frac{1}{{a}_{n}^{2}}$-$\frac{1}{{a}_{n-1}^{2}}$=1(n≥2,n∈N*),则a1024=(  )
A.$\frac{\sqrt{2}}{16}$B.$\frac{1}{16}$C.$\frac{\sqrt{2}}{32}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若同时抛掷两枚骰子,则向上的点数之差的绝对值为3的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系内,区域M满足$\left\{\begin{array}{l}0≤x≤π\\ 0≤y≤1\end{array}$区域N满足$\left\{\begin{array}{l}0≤x≤π\\ 0≤y≤sinx\end{array}$则向区域M内投一点,落在区域N内的概率是(  )
A.$\frac{2}{π}$B.$\frac{π}{4}$C.2-$\frac{2}{π}$D.2-$\frac{π}{4}$

查看答案和解析>>

同步练习册答案