精英家教网 > 高中数学 > 题目详情
如图,已知正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为3
2
,点E在侧棱AA1上,点F在侧棱BB1上,D为线段CE上任意一点,且AE=2
2
,BF=
2

(I) 求证:C1E⊥FD;
(Ⅱ) 若D为线段CE的中点,求二面角C1-FD-E的余弦值的大小.
考点:二面角的平面角及求法,直线与平面垂直的性质
专题:综合题,空间位置关系与距离,空间角
分析:(I)欲证C1E⊥平面CEF,根据直线与平面垂直的判定定理可知只需证C1E与平面CEF内两相交直线垂直,根据勾股定理可知EF⊥C1E,C1E⊥CE,又EF∩CE=E,满足线面垂直的判定定理,最后根据线面垂直的性质可知CF⊥C1E;
(II)确定∠EDC1为二面角C1-FD-E的一个平面角,求出ED=
3
C1E=
6
,C1D=3,即可求二面角C1-FD-E的余弦值的大小.
解答: (I)证明:由已知可得CC1=3
2
,CE=C1F=2
3

EF2=AB2+(AE-BF)2,EF=C1E=
6

于是有EF2+C1E2=C1F2,CE2+C1E2=C1C2
∴EF⊥C1E,C1E⊥CE.又EF∩CE=E,
∴C1E⊥平面CEF
由CF?平面CEF,
故C1E⊥FD;
(Ⅱ)由题意易求EF=CF=
6

∵D为线段CE的中点,∴FD⊥ED,
又∵C1E⊥FD,
∴FD⊥面C1ED,∴FD⊥C1D,
∴∠EDC1为二面角C1-FD-E的一个平面角.
在RT△C1DE中,ED=
3
C1E=
6
,∴C1D=3,
cos∠EDC1=
3
3

∴二面角C1-FD-E的余弦值为
3
3
点评:本题主要考查了空间直线与平面的位置关系和二面角的求法,同时考查了空间想象能力和推理论证的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=4,点E在CC1上,且C1E=3EC.
(Ⅰ)证明:A1C⊥平面BDE;
(Ⅱ)求直线A1D与平面BDE所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生社团在对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天背和晚上临睡前背.为研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排粪型进行分层抽样,并完成一项实验,实验方法是,使两组学生记忆40个无意义音节(如xIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆测验.不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验.两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点而不舍右端点)

(1)估计1000名被调查的学生中识记停止后8小时40个音节的保持率大于等于60%的人数;
(2)从乙组准确回忆结束在|12,24)范围内的学生中随机选3人,记能准确回忆20个以上(含20)的人数为随机变量x.求X分布列及数学期望;
(3)从本次实验的结果来看,上述两种时间安排方法中哪种方法背英语单词记忆效果更好?计算并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|y=log2(-x2-2x+8)},B={y|y=x+
1
x-1
-2},集合C={x|(ax-
1
a
)(x+4)≤0}.
(1)求A∩B;
(2)若C⊆∁RA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等差数列,其前n项和是Sn,a3=6,S3=12.
(1)求数列{an}的通项公式;
(2)求
1
S1
+
1
S2
+…+
1
Sn
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上两动点,F1,F2分别为其左右焦点,直线AB过点F2(c,0),且不垂直于x轴,△ABF1的周长为8,且椭圆的短轴长为2
3

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点P为椭圆C的左端点,连接PA并延长交直线l:x=4于点M.求证:直线BM过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

在以O为极点的极坐标系中,直线l与曲线C的极坐标方程分别是ρcos(θ+
π
4
)=3
2
和ρsin2θ=8cosθ,已知直线l与曲线C交于点A、B,则线段AB的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①不等式x+
1
x
≥2恒成立;
②在三角形ABC中,如果有sinA=sinB成立,则必有A=B;
③将两个变量所对应的点在平面直角坐标系中描出来,如果所描的点在散点图中没有显示任何关系则称变量间是不相关的;
④等差数列{an}的首项a1=-50,公差d=2,前n项和为Sn,则n=25或n=26是使Sn取到最大值;
其中为正确命题的序号是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b>0,且ab=1,不等式
a
a2+1
+
b
b2+1
≤λ恒成立,则λ的取值范围是
 

查看答案和解析>>

同步练习册答案