精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,点P(x,y)为动点,已知点A(
2
,0),B(-
2
,0),直线PA与PB的斜率之积为定值-
1
2

(Ⅰ)求动点P的轨迹E的方程;
(Ⅱ)若F(1,0),过点F的直线l交轨迹E于M、N两点,以MN为对角线的正方形的第三个顶点恰在y轴上,求直线l的方程.
分析:(Ⅰ)用坐标表示直线PA与PB的斜率因为直线PA与PB的斜率之积为定值-
1
2
,可得
y
x-
2
y
x+
2
=-
1
2
即轨迹方程为
x2
2
+y2=1(y≠0)

(Ⅱ)讨论斜率为0与斜率不存在时不合题意,设直线方程为y=k(x-1),利用根与系数的关系表示MN的中点Q(
2k2
2k2+1
,-
k
2k2+1
)
,则线段MN的中垂线m的方程为
m:y=-
x
k
+
k
2k2+1
则直线m与y轴的交点R(0,
k
2k2+1
)
RM
RN
=0
可解得k=±1,即直线l的方程为y=±(x-1).
解答:解:(Ⅰ)由题意
y
x-
2
y
x+
2
=-
1
2

整理得
x2
2
+y2=1
,所以所求轨迹E的方程为
x2
2
+y2=1(y≠0)

(Ⅱ)当直线l与x轴重合时,与轨迹E无交点,不合题意;
当直线l与x轴垂直时,l:x=1,此时M(1,
2
2
),N(1,-
2
2
)
,以MN为对角线的正方形的另外两个顶点坐标为(1±
2
2
,0)
,不合题意;
当直线l与x轴既不重合,也不垂直时,不妨设直线l:y=k(x-1)(k≠0),M(x1,y1),N(x2,y2),MN的中点Q(
x1+x2
2
,k(
x1+x2
2
-1))

y=k(x-1)
x2
2
+y2=1
消y得(2k2+1)x2-4k2x+2k2-2=0,
x1=
4k2+
2(2k2+1)
x2=
4k2-
2(2k2+1)
x1+x2=
4k2
2k2+1
x1x2=
2k2-2
2k2+1

所以Q(
2k2
2k2+1
,-
k
2k2+1
)

则线段MN的中垂线m的方程为:y+
k
2k2+1
=-
1
k
(x-
2k2
2k2+1
)

整理得直线m:y=-
x
k
+
k
2k2+1

则直线m与y轴的交点R(0,
k
2k2+1
)

注意到以MN为对角线的正方形的第三个顶点恰在y轴上,
当且仅当RM⊥RN,
RM
RN
=(x1y1-
k
2k2+1
)•(x2y2-
k
2k2+1
)=0

x1x2+y1y2-
k
2k2+1
(y1+y2)+
k2
(2k2+1)2
=0
,①
y1y2=k2[x1x2-(x1+x2)+1]=-
k2
2k2+1
y1+y2=k(x1+x2-2)=-
2k
2k2+1

将②代入①解得k=±1,即直线l的方程为y=±(x-1),
综上,所求直线l的方程为x-y-1=0或x+y-1=0.
点评:有关三角形的问题是高考的一个重点,多与三角形的周长,面积,形状等问题相关,解决此类问题关键是抓住曲线与三角形的特性灵活找出问题的所在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案