分析 (1)求出函数的定义域,然后判断函数的奇偶性.
(2)直接利用对数不等式化简求解即可.
解答 (本题12分)
解:(1)函数h(x)=f(x)-g(x)=ln(2+x)-ln(2-x)
由 $\left\{\begin{array}{l}x+2>0\\ 2-x>0\end{array}\right.$知-2<x<2--------------------------(4分)
∴函数y=f(x)-g(x)的定义域为(-2,2)h(-x)=ln(2-x)-ln(2+x)=-h(x)-------------------------------(6分)∴h(x)为奇函数-------------------------------(7分)
由 f(x)≥g(x)得ln(2+x)≥ln(2-x)-----------------------------------------(8分)
∴$\left\{\begin{array}{l}x+2>0\\ 2-x>0\\ x+2≥2-x\end{array}\right.$-----------------------------(10分)
解得 0≤x<2
∴使f(x)≥g(x)成立的x的取值范围是[0,2)---------------------(12分)
点评 本题画出函数的奇偶性以及对数不等式的解法,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com