精英家教网 > 高中数学 > 题目详情
16.已知向量$\overrightarrow{a},\overrightarrow{b}$夹角为60°,且|$\overrightarrow{a}$|=1,|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{7}$,则|$\overrightarrow{b}$|=3.

分析 利用数量积运算和性质即可得出.

解答 解:∵|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{7}$,∴4${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=7,
∴4×12-4×1×|$\overrightarrow{b}$|cos60°+|$\overrightarrow{b}$|2=7,
解得|$\overrightarrow{b}$|=3.
故答案为:3.

点评 本题考查了数量积运算和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列事件中,是随机事件的是(  )
①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;
②某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;
③异性电荷,相互吸引;
④某人购买体育彩票中一等奖.
A.②④B.①②④C.①②③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列四组函数中表示同一个函数的是(  )
A.f(x)=|x|与$g(x)=\sqrt{x^2}$B.f(x)=x0与g(x)=1
C.$f(x)=\sqrt{x-1}\sqrt{x+1}$与$g(x)=\sqrt{{x^2}-1}$D.$f(x)=\root{3}{x^3}$与$g(x)=\sqrt{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ln(2+x),g(x)=ln(2-x)
(1)判断函数h(x)=f(x)-g(x)的奇偶性;
(2)求使f(x)≥g(x)成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)=$\sqrt{2-x}$+$\sqrt{\frac{1}{x+1}}$,则函数g(x)=$\frac{f(2x)}{x-1}$的定义域是(  )
A.[-$\frac{1}{2}$,1]B.[-$\frac{1}{2}$,2]C.(-$\frac{1}{2}$,2]D.(-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=lg$\frac{1+ax}{1-2x}({a>0})$是奇函数,则函数$g(x)={log_{\frac{1}{a}}}({{x^2}-6x+5})$的单调递减区间是(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.袋子中装有大小相同的6个小球,2红4白,现从中有放回的随机摸球3次,每次摸出1个小球,则至少有2次摸出白球的概率为$\frac{20}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果圆锥曲线$\frac{{x}^{2}}{m-1}+\frac{{y}^{2}}{m+8}$=1的焦距是与m无关的非零常数,那么它的焦点坐标是(  )
A.(0,±3)B.(±3,0)C.(0,±$\sqrt{7}$)D.(±$\sqrt{7}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题p:?x∈R,x2+x+1>0;命题q:?x∈R,x3=1-x2,下列命题中为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

同步练习册答案