精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log
1
3
(3x+1)+
1
2
abx
为偶函数,g(x)=2x+
a+b
2x
为奇函数,其中a、b为常数,则(a+b)+(a2+b2)+(a3+b3)+…+(a100+b100)=
-1
-1
分析:由奇偶函数的定义列出关于a、b的方程组,求出它们的和与积的值,在转化为对应一元二次方程的根,进而求出复数a和b,再利用和与积的值和a3=b3=1求出a2+b2,a3+b3,a4+b4等,找出具有周期性T为3,再利用周期性求出式子的和.
解答:解:∵f(x)为偶函数,g(x)为奇函数,
f(1)=f(-1)
g(0)=0

1
2
ab+
log
(3+1)
3
= -
1
2
ab+
log
(
1
3
+1)
3
1+a+b=0

解得
ab=1
a+b=-1

∴复数a、b是方程x2+x+1=0的两个根,
解得,a=-
1
2
+
3
2
i,b=-
1
2
-
3
i;
∴a3=b3=1
已知a+b=-1,ab=1;则a2+b2=(a+b)2-2ab=-1,a3+b3=2,
同理可求a4+b4=-1,a5+b5=-1,a6+b6=2,…,归纳出有周期性且T=3,
∴(a+b)+(a2+b2)+(a3+b3)+…+(a100+b100)=99[(a+b)+(a2+b2)+(a3+b3)]+(a+b)=-1.
故答案为:-1.
点评:本题考查了奇(偶)函数的定义和复数的运算,再求复数的值时用到转化思想,求和式的值时利用a3=b3=1找出每项的和的周期,利用周期性求所求和式的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案