精英家教网 > 高中数学 > 题目详情
16.已知z∈C,解方程$z•\overline z-2zi=1+2i$.

分析 设z=a+bi(a,b∈R),代入$z•\overline z-2zi=1+2i$,展开后由复数相等的条件列式求得a,b的值,则z可求.

解答 解:设z=a+bi(a,b∈R),则(a+bi)(a-bi)-2i(a+bi)=1+2i,
即a2+b2+2b-2ai=1+2i.
由$\left\{\begin{array}{l}{-2a=2}\\{{a}^{2}+{b}^{2}+2b=1}\end{array}\right.$,
得$\left\{\begin{array}{l}{a_1}=-1\\{b_1}=0\end{array}\right.$或$\left\{\begin{array}{l}{a_2}=-1\\{b_2}=-2\end{array}\right.$,
∴z=-1或z=-1-2i.

点评 本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知sinα=2cosα,则$cos(\frac{7π}{2}-2α)$=(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=2sinxcosx+2$\sqrt{3}$sin2x,x∈R,则函数f(x)的单调递增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数,在区间$(\frac{π}{2},π)$上是增函数的是(  )
A.y=cosxB.y=|sinx|C.y=cos2xD.y=sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.含有参数形式的复数如:3m+9+(m2+5m+6)i,(m∈R)何时表示实数、虚数、纯虚数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一艘船的燃料费与船速度的平方成正比,如果此船速度是10km/h,那么每小时的燃料费是80元,已知船航行时其他费用为320元/时,在20km航程中,船速不得超过akm/h(a为常数且a>0),船速多少时船行驶总费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若sinθ>0且sin2θ>0,则角θ的终边所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=$\frac{a}{x}$-x,a∈R.
(Ⅰ)若a=-1,求f(x)在区间[$\frac{1}{2}$,3]上的最大值;
(Ⅱ)设b≠0,求证:当a=-1时,过点P(b,-b)有且只有一条直线与曲线y=f(x)相切;
(Ⅲ)若对任意的x∈[$\frac{1}{2}$,2],均有f(x)|x-1|≤1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2x-1,集合A={x|1≤x≤2}.
(1)记函数f(x)在A上的值域为C,若函数G(x)=x2+2x+t,x∈[0,1]的值域为B,且C∪B=B,求实数t的取值范围;
(2)若?x∈A,[f(log2x)]2+2af(log2x)+a>-5恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案