精英家教网 > 高中数学 > 题目详情

设函数数学公式
(1)求函数f(x)的单调区间;
(2)如果当数学公式恒成立,则求实数a的取值范围.

解:(1)由题意可知函数f(x)的定义域为(1,+∞),
设g(x)=x2-2ax+2a,△=4a2-8a=4a(a-2),
①当△≤0,即0≤a≤2,g(x)≥0,
∴f(x)≥0,f(x)在(1,+∞)上单调递增.
②当a<0时,g(x)的对称轴为x=a,当x>1时,由二次函数的单调性可知g(x)>g(1)>0,
∴f(x)>0,f(x)在(1,+∞)上单调递增.
③当a>2时,设x1,x2(x1<x2)是方程x2-2ax+2a=0的两个根,则
当1<x<x1或x>x2时,f(x)>0,f(x)在(1,x1),(x2,+∞)上是增函数.
当x1<x<x2时,f(x)<0,f(x)在(x1,x2)上是减函数.
综上可知:当a≤2时,f(x)在(1,+∞)上单调递增;
当a>2时,f(x)的单调增区间为(1,x2),(x2,+∞),单调递减区间为(x1,x2).
(2),即,(*)
令h(x)=f(x)-a,由(1)知:
①当a≤2时,f(x)在(1,+∞)上是增函数,所以h(x)在(1,+∞)是增函数.
因为当1<x<2时,h(x)<h(2)=0,∴(*)式成立;
当x>2时,h(x)>h(2)=0,∴(*)成立;
所以当a≤2时,(*)成立
②当a>2时,因为f(x)在(x1,2)上是减函数,所以h(x)在(x1,2)上是减函数,所以当x1<x<2时,h(x)>h(2)=0,(*)不成立.
综上可知,a的取值范围为(-∞,2].
分析:(1)通过对函数f(x)求导,进而转化为判断二次函数y=x2-2ax+2a的正负问题,再对a分类讨论即可.
(2)当恒成立问题,转化为当x>1,且x≠2时恒成立问题,只要利用(1)的结论对a及x进行分类讨论f(x)-a及x-2的符号即可.
点评:本题综合考查了函数的单调性及恒成立问题,关键是通过分类讨论得到函数的单调区间及会转化利用已证的结论解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
x2+bx+c,(-4≤x<0)
-x+3,(x≥0)
,若f(-4)=f(0),f(-2)=-1,
(1)求函数f(x)的解析式,
(2)画出函数f(x)的图象,并指出函数的定义域和值域.
(3)解不等式xf(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)设函数f(x)=
x2+bx+c
2
其中b>0,c∈R.当且仅当x=-2时,函数f(x)取得最小值-2.
(1)求函数f(x)的表达式;
(2)若方程f(x)=x+a(a∈R)至少有两个不相同的实数根,求a取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年岳阳一中二模文)(12分)

设函数

 (1)求函数f(x)的单调区间,并求函数f(x)的极大值和极小值;

 (2)当x∈[a+1, a+2]时,不等,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数

   (1)求函数f(x)的单调区间,并求函数f(x)的极大值和极小值;

   (2)当x∈[a+1, a+2]时,不等,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省泰州市姜堰市蒋垛中学高三数学综合练习2(文科)(解析版) 题型:解答题

设函数
(1)求函数f(x)的值域;
(2)设A,B,C为△ABC的三个内角,若,且C为锐角,求sinA的值.

查看答案和解析>>

同步练习册答案