ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=2+(n-1)(
1
2
)n-1(n¡ÊN*)
£¬Ôò´æÔÚÊýÁÐ{xn}£¬{yn}£¬Ê¹µÃ£º£¨¡¡¡¡£©
·ÖÎö£ºÓÉÌâÒâÖªan=Sn-Sn-1=[2+(n-1)(
1
2
)
n-1
]-[2+(n-2)(
1
2
)
n-2
]£¬»¯¼òºó¹Û²ìͨÏʽµÄ¹¹Ô죬½áºÏµÈ²îµÈ±ÈÊýÁе͍Ò壬¼´¿ÉµÃ´ð°¸£®
½â´ð£º½â£ºµ±n=1ʱ£¬a1=S1=a£¬
µ±n¡Ý2ʱ£¬an=Sn-Sn-1
=[2+(n-1)(
1
2
)
n-1
]-[2+(n-2)(
1
2
)
n-2
]
=(n-1)(
1
2
)
n-1
-(n-2)(
1
2
)
n-2

=(n-1)(
1
2
)
n-1
-(2n-4)(
1
2
)
n-1

=(3-n)(
1
2
)
n-1

Áîxn=3-n£¬yn=(
1
2
)
n-1

Ôò{xn}ΪµÈ²îÊýÁУ¬{yn}ΪµÈ±ÈÊýÁÐ
¹Êan=xnyn£¬n¡ÊN*£¬ÆäÖÐ{xn}ΪµÈ²îÊýÁУ¬{yn}ΪµÈ±ÈÊýÁÐ
¹ÊÑ¡D
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

19¡¢ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=n2£¨n¡ÊN*£©£¬ÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬ÇÒÂú×ãb1=a1£¬2b3=b4
£¨1£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{anbn}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=an2+bn£¨a¡¢b¡ÊR£©£¬ÇÒS25=100£¬Ôòa12+a14µÈÓÚ£¨¡¡¡¡£©
A¡¢16B¡¢8C¡¢4D¡¢²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=n2+n+1£¬ÄÇôËüµÄͨÏʽΪan=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

13¡¢ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn=3n+a£¬Èô{an}ΪµÈ±ÈÊýÁУ¬ÔòʵÊýaµÄֵΪ
-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSnÂú×ãSn+1=kSn+2£¬ÓÖa1=2£¬a2=1£®
£¨1£©ÇókµÄÖµ¼°Í¨Ïʽan£®
£¨2£©ÇóSn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸