【题目】已知三棱锥
,从
、
、
三点及各棱中点共9个点中任取不共面4点,共______种不同的取法.(用数字作答)
【答案】90
【解析】
由题意知从9个点中任取4个点有
种取法,减去不合题意的结果,4点共面的情况有三类,取出的4个点位于四面体的同一个面上;取任一条棱上的3个点及该棱对棱的中点;由中位线构成的平行四边形,用所有的结果减去不合题意的结果即可求出答案.
从9个点中任取4个点有
种取法,
其中4点共面的情况有三类.
第一类,取出的4个点位于四面体的同一个面上,有
中;
第二类,取底面BCD中任一条棱上的3个点及该棱对棱的中点,这4点共面,有3种;
第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4顶点共面,有3种.
以上三类情况不合要求应减掉,
所以9个点中任取不共面4点,不同的取法共有
种.
故答案为:90.
科目:高中数学 来源: 题型:
【题目】已知点
,
,
,设
,
,其中
为坐标原点.
(1)设点
在
轴上方,到线段
所在直线的距离为
,且
,求
和线段
的大小;
(2)设点
为线段
的中点,若
,且点
在第二象限内,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】P是圆
上的动点,P点在x轴上的射影是D,点M满足
.
![]()
(1)求动点M的轨迹C的方程,并说明轨迹是什么图形;
(2)过点
的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB为邻边的平行四边形OAEB的顶点E的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
在
处的切线方程为
.
(1)求函数
的解析式;
(2)若关于
的方程f(x)=kex(其中e为自然对数的底数)恰有两个不同的实根,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知二次函数
(
、
、
均为实常数,
)的最小值是0,函数
的零点是
和
,函数
满足
,其中
,为常数.
(1)已知实数
、
满足、
,且
,试比较
与
的大小关系,并说明理由;
(2)求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,已知椭圆
的左顶点为
,过
的直线交椭圆
于另一点
,直线
交
轴于点
,且
.
![]()
(1)求椭圆
的离心率;
(2)若椭圆
的焦距为
,
为椭圆
上一点,线段
的垂直平分线
在
轴上的截距为
(
不与
轴重合),求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A是以BC为直径的圆O上异于B,C的动点,P为平面ABC外一点,且平面PBC⊥平面ABC,BC=3,PB=2
,PC
,则三棱锥P﹣ABC外接球的表面积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有五个命题:
①函数
的最小正周期是
;
②终边在y轴上的角的集合是
;
③在同一坐标系中,函数
的图象和函数
的图象有一个公共点;
④把函数
;
⑤在
中,若
,则
是等腰三角形
;
其中真命题的序号是( )
A.(1)(2)(3) B.(2)(3)(4)
C.(3)(4)(5) D.(1)(4)(5)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com