精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知椭圆的左顶点为,过的直线交椭圆于另一点,直线轴于点,且.

1)求椭圆的离心率;

2)若椭圆的焦距为为椭圆上一点,线段的垂直平分线轴上的截距为不与轴重合),求直线的方程.

【答案】(1)(2)

【解析】

(1),利用,解得,将其代入椭圆方程可得,再用离心率公式可得;

(2)(1)可求得椭圆方程,的中点为,可求得直线的方程,用中点公式求得点的坐标,将其代入椭圆方程可得一个关于的方程,在直线的方程中令,,也可得一个关于的方程,两个方程联立可解得,从而可得直线的方程.

1,设

因为

所以,,解得:,所以,

因为点在椭圆上,所以有:,即

所以离心率.

2)依题意有:,所以,

,且,解得:

所以椭圆方程为:

的中点为,则,故有

从而的方程为:

得到

整理得,

利用中点公式可得,将其代入椭圆方程得 ,

整理得,

联立①②方程解得

时,可得直线轴重合,不合题意舍去,

所以,此时,解得

的方程为或者.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足.

1)证明:数列为等差数列;

2)设数列的前n项和为,若,且对任意的正整数n,都有,求整数的值;

3)设数列满足,若,且存在正整数st,使得是整数,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)若,令,若的两个极值点,且,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥,从三点及各棱中点共9个点中任取不共面4点,共______种不同的取法.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知数列1333,即当)时,,记).

1)求的值;

2)求当),试用nk的代数式表示);

3)对于,定义集合的整数倍,,且,求集合中元素的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201911日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用 ②子女教育费用 ③继续教育费用 ④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月共扣除2000 ②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:

级数

全月应纳税所得额

税率

1

不超过3000元的部分

3%

2

超过3000元至12000元的部分

10%

3

超过12000元至25000元的部分

20%

现有李某月收入18000元,膝下有两名子女,需要赡养老人,(除此之外,无其它专项附加扣除,专项附加扣除均按标准的100%扣除),则李某月应缴纳的个税金额为(

A.590B.690C.790D.890

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的单调递减区间;

(2)求函数在区间上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大学的生活丰富多彩,很多学生除了学习本专业的必修课外,还会选择一些选修课来充实自已.甲同学调查了自己班上的名同学学习选修课的情况,并作出如下表格:

每人选择选修课科数

频数

1)求甲同学班上人均学习选修课科数:

2)甲同学和乙同学的某门选修课是在同一个班,且该门选修课开始上课的时间是早上,已知甲同学每次上课都会在之间的任意时刻到达教室,乙同学每次上课都会在之间的任意时刻到达教室,求连续天内,甲同学比乙同学早到教室的天数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.

(1)若的坐标为,求的值;

(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

同步练习册答案