精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD的底面为梯形,BA⊥AD,CD⊥AD,CD=2AB,PD⊥底面ABCD,E为PC的中点.
(1)求证:EB∥平面PAD;
(2)若PA=AD=DC,求二面角E-BD-C的余弦值.
分析:(1)取CD的中点F,连接EF、BF,则EF∥PD,由此能够证明EB∥平面PAD.
(2)建立空间直角坐标系O-xyz,设OB=1,则PA=AD=DC=2,利用向量法能够求出二面角E-BD-C的余弦值.
解答:(1)证明:取CD的中点F,连接EF、BF,
则EF∥PD,
∴EF∥平面PAD,
∵BF∥AD,∴BF∥平面PAD,
∴平面EBF∥平面PAD,
∴EB∥平面PAD.
(2)解:如图,建立空间直角坐标系O-xyz,
设OB=1,则PA=AD=DC=2,
∴B(1,0,0),D(0,2,0),P(0,0,2),C(2,2,0),


∴E(1,1,1),
BE
=(0,1,1),
BD
=(-1,2,0)

取平面BDC的法向量
n1
=(0,0,1)

设平面BDE的法向量
n2
=(x,y,z)
,则
BD
n2
=0
BE
n2
=0

-x+2y=0
y+z=0
,∴
n2
=(2,1,-1),
设二面角E-BD-C的平面角为θ,
则cosθ=|cos<
n1
n2
>|=|
-1
6
|=
6
6
点评:本题考查直线与平面平行的证明,考查二面角的平面角的求法,解题时要认真审题,仔细解答,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案