【题目】已知椭圆
的左、右顶点分别为
、
,上、下顶点分别为
,
,
为其右焦点,
,且该椭圆的离心率为
;
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过点
作斜率为
的直线
交椭圆
于
轴上方的点
,交直线
于点
,直线
与椭圆
的另一个交点为
,直线
与直线
交于点
.若
,求
取值范围.
科目:高中数学 来源: 题型:
【题目】近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各:城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在
省的发展情况,
省某调查机构从该省抽取了
个城市,分别收集和分析了网约车的
两项指标数
,数据如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
|
|
|
|
|
|
|
|
|
|
|
|
经计算得:![]()
(1)试求
与
间的相关系数
,并利用
说明
与
是否具有较强的线性相关关系(若
,则线性相关程度很高,可用线性回归模型拟合);
(2)立
关于
的回归方程,并预测当
指标数为
时,
指标数的估计值.
附:相关公式:
,![]()
参考数据:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若直线
与曲线
满足以下两个条件:点
在曲线
上,直线
方程为
;曲线
在点
附近位于直线
的两侧,则称直线
在点
处“切过”曲线
.下列选项正确的是( )
A.直线
在点
处“切过”曲线![]()
B.直线
在点
处“切过”曲线![]()
C.直线
在点
处“切过”曲线![]()
D.直线
在点
处“切过”曲线![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得
分,现从盒内任取3个球.
(Ⅰ)求取出的3个球中至少有一个红球的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设
为取出的3个球中白色球的个数,求
的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表.已知从全部210人中随机抽取1人为优秀的概率为
.
![]()
(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与班级有关”;
(2)从全部210人中有放回地抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望E(ξ).
P(K2≥k0) | 0.05 | 0.01 |
k0 | 3.841 | 6.635 |
附: ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省积极响应教育部号召实行新课程改革,为了调查某校高三学生的物理考试成绩是否达到
级与学生性别是否有关,从该校高三学生中随机抽取了部分男女生的成绩得到如下列联表:
考试成绩达到 | 考试成绩未达到 | 总计 | |
男生 | 26 | 40 | |
女生 | 6 | ||
总计 | 70 |
(1)(ⅰ)将
列联表补充完整;
(ⅱ)据此列联表判断,能否有
的把握认为“物理考试成绩是否达到级与性别有关”?
(2)将频率视作概率,从该校高三年级任意抽取3名学生的成绩,求物理考试成绩达到
级的人数的分布列及期望.
附:![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10..828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校开设了射击选修课,规定向
、
两个靶进行射击:先向
靶射击一次,命中得1分,没有命中得0分,向
靶连续射击两次,每命中一次得2分,没命中得0分;小明同学经训练可知:向
靶射击,命中的概率为
,向
靶射击,命中的概率为
,假设小明同学每次射击的结果相互独立.现对小明同学进行以上三次射击的考核.
(1)求小明同学恰好命中一次的概率;
(2)求小明同学获得总分
的分布列及数学期望
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com