精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x
+alnx-2

(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求a的值;
(Ⅱ)若f(x)≥0在x∈[1,+∞)上恒成立,求a的范围.
分析:(Ⅰ)求导函数,利用曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,建立方程,即可求a的值;
(Ⅱ)求导函数,分类讨论,确定函数的单调性,即可求得a的范围.
解答:解:(Ⅰ)函数y=f(x)的导数为f′(x)=-
2
x2
+
a
x
,则
∵曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,直线y=x+2的斜率为1,
∴f′(1)=-2+a=-1,∴a=1;
(Ⅱ)求导数可得f′(x)=
ax-2
x2
(x≥1)

a≥2时,f′(x)≥0,函数在x∈[1,+∞)上单调递增,∴f(x)min=f(1)=0,满足题意;
a<2时,f′(x)<0,函数在x∈[1,+∞)上单调递减,∴f(x)max=f(1)=0,不满足题意
综上,a的范围为[2,+∞).
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案