精英家教网 > 高中数学 > 题目详情
20.已知抛物线y2=2px(1<p<3)的焦点为F,抛物线上的点M(x0,1)到准线的距离为$\frac{5}{4}$
(1)求抛物线的标准方程;
(2)设直线MF与抛物线的另一交点为N,求$\frac{|MF|}{|NF|}$的值.

分析 (1)由题意$\left\{\begin{array}{l}{{x}_{0}+\frac{p}{2}=\frac{5}{4}}\\{2p{x}_{0}=1}\end{array}\right.$,解得即可求出p的值,写出抛物线的方程即可;
(2)先求出直线MF的方程为4x+3y-4=0,联立方程得方程组$\left\{\begin{array}{l}{{y}^{2}=4x}\\{4x+3y-4=0}\end{array}\right.$,求出x,y的值,由由焦半径公式|MF|=$\frac{1}{4}$+1=$\frac{5}{4}$,|NF|=4+1=5,问题得以解决.

解答 解:(1)由题意$\left\{\begin{array}{l}{{x}_{0}+\frac{p}{2}=\frac{5}{4}}\\{2p{x}_{0}=1}\end{array}\right.$,消去x0得2p2-5p+2=0,因为1<p<3,解得p=2,
所以x0=$\frac{1}{4}$,所以抛物线标准方程为y2=4x.
(2)因为F(1,0),M($\frac{1}{4}$,1),所以kMF=-$\frac{4}{3}$,直线MF的方程为4x+3y-4=0,
联立方程得方程组$\left\{\begin{array}{l}{{y}^{2}=4x}\\{4x+3y-4=0}\end{array}\right.$,消去x得y2+3y-4=0,解得y=-4或1,将y=-4代入y2=4x,解得x=4,
由焦半径公式|MF|=$\frac{1}{4}$+1=$\frac{5}{4}$,|NF|=4+1=5,
所以$\frac{|MF|}{|NF|}$=$\frac{\frac{5}{4}}{5}$=$\frac{1}{4}$.

点评 本题考查了抛物线的标准方程,焦半径公式,方程组的解法,培养了学生的运算能力和转化能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某市在中学生综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级.其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”.
(1)某校高一年级有男生500人,女生400人,为了了解性别对该综合素质评价结果的影响,采用分层抽样方法从高一年级抽取了45名学生的综合素质评价结果,并作出频数统计如表:
等级 优秀 合格 不合格
 男生(人) 15 x 5
 女生(人) 15 3y
根据表中统计的数据填写下边2×2列联表,并判断是否有90%的把握认为“综合素质评价测评结果为优秀与性别有关”?
男生女生总计
优秀
非优秀
总计
(2)以(1)中抽取的45名学生的综合素质评价等级的频率作为全市各个评价等级发生的概率,且每名学生是否“优秀”相互独立,现从该市高一学生中随机抽取3人.
①求所选3人中恰有2人综合素质评价为“优秀”的概率;
②记X表示这3个人中综合速度评价等级为“优秀”的个数,求X的数学期望.
参考数据与公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
临界值表:
 P(K2>k0 0.15 0.10 0.05 0.025 0.010
 k0 2.072 2.706 3.841 5.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=$\sqrt{2}$,M为线段B1D1的中点.
(1)求证:MB⊥AC
(2)求三棱锥D1-ACB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱柱ABCD-A1B1C1D1中,底面ABCD和侧面BCC1B1都是矩形,E是CD的中点,D1E⊥CD,AB=2BC=2.
(Ⅰ)求证:D1E⊥底面ABCD;
(Ⅱ)若直线BD1与平面ABCD所成的角为$\frac{π}{3}$,求四棱锥D1-ABED体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点P是抛物线x2=4y上的动点,点P在其准线上的射影是点M,点A的坐标(4,2),则|PA|+|PM|的最小值是(  )
A.$\sqrt{17}$B.$\sqrt{13}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图所示,一隧道内设双行线公路,其截面由一个长方形和抛物线构成.为保证安全,要求行使车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有0.5米.若行车道总宽度AB为6米,则车辆通过隧道的限制高度是3.2米(精确到0.1米)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线y2=ax(a>0),经过焦点且倾斜角为135°的直线被抛物线所截得的弦长为8,试求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设a,b,c都是正数,求证:a+b+c≤$\frac{{a}^{2}+{b}^{2}}{2c}$+$\frac{{b}^{2}{+c}^{2}}{2a}$+$\frac{{c}^{2}+{a}^{2}}{2b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设a,b,c∈R+.求证:
(1)ab(a+b)+bc(b+c)+ca(c+a)≥6abc;
(2)(a+b+c)($\frac{1}{a}$+$\frac{1}{b+c}$)≥4.

查看答案和解析>>

同步练习册答案