分析 先求出抛物线的解析式,再根据题意判断该隧道能通过的车辆的最高高度即可得到结论.先求出抛物线的解析式,再根据题意判断该隧道能通过的车辆的最高高度即可得到结论.
解答 解:取抛物线的顶点为原点,对称轴为y轴,建立直角坐标系,c(4,-4),![]()
设抛物线方程x2=-2py(p>0),将点C代入抛物线方程得p=2,
∴抛物线方程为x2=-4y,行车道总宽度AB=6m,
∴将x=3代入抛物线方程,y=-2.25m,
∴限度为6-2.25-0.5=3.25m,
∴则车辆通过隧道的限制高度是3.2米(精确到0.1米),
故答案为:3.2.
点评 本题主要考查了二次函数的实际应用,解答二次函数的应用问题时,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 增加了一项$\frac{1}{2(k+1)}$ | B. | 增加了一项$\frac{1}{2k+1}+\frac{1}{2(k+1)}$ | ||
| C. | 增加了$\frac{1}{2k+1}+\frac{1}{2(k+1)}$,又减少了$\frac{1}{k+1}$ | D. | 增加了 $\frac{1}{2(k+1)}$,又减少了$\frac{1}{k+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com