分析 取CD的中点O为原点建立空间直角坐标系,则α的法向量为$\overrightarrow{n}$=(0,0,1),设平面BCD与平面α所成的二面角为θ,正四面体边长为2,用θ表示出$\overrightarrow{AE}$的坐标,利用三角恒等变换计算|cos<$\overrightarrow{AE}$,$\overrightarrow{n}$>|的最大值即可.
解答
解:取CD的中点O,在平面α内过O作y轴⊥CD,作z轴⊥平面α,以O为原点建立空间直角坐标系如图所示:
作EM⊥CD,垂足为M,
设平面BCD与平面α所成的二面角为θ,正四面体边长为2,则AO=BO=AE=$\sqrt{3}$,EM=$\frac{1}{2}$BO=$\frac{\sqrt{3}}{2}$.OM=$\frac{1}{4}$CD=$\frac{1}{2}$.
∴cos∠AOB=$\frac{O{A}^{2}+O{B}^{2}-A{B}^{2}}{2OA•OB}$=$\frac{1}{3}$.
∴E($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$cosθ,$\frac{\sqrt{3}}{2}$sinθ),A(0,-$\sqrt{3}$cos(θ+∠AOB),$\sqrt{3}$sin(θ+∠AOB),).
∴$\overrightarrow{AE}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$cosθ+$\sqrt{3}$cos(θ+∠AOB),$\frac{\sqrt{3}}{2}$sinθ-$\sqrt{3}$sin(θ+∠AOB)).
∵$\overrightarrow{n}$=(0,0,1)是平面α的一个法向量,
∴$\overrightarrow{AE}•\overrightarrow{n}$=$\frac{\sqrt{3}}{2}$sinθ-$\sqrt{3}$sin(θ+∠AOB)=$\frac{\sqrt{3}}{6}$sinθ-$\frac{2\sqrt{6}}{3}$cosθ=$\frac{\sqrt{11}}{2}$sin(θ+φ),
∵|$\overrightarrow{AE}$|=$\sqrt{3}$,|$\overrightarrow{n}$|=1,∴cos<$\overrightarrow{AE},\overrightarrow{n}$>|=$\frac{\overrightarrow{AE}•\overrightarrow{n}}{|\overrightarrow{AE}||\overrightarrow{n}|}$=$\frac{\sqrt{33}}{6}$sin(θ+φ)
∴直线AE与平面α所成最大角的正弦值为$\frac{\sqrt{33}}{6}$.
故答案为$\frac{\sqrt{33}}{6}$.
点评 本题考查了空间向量在立体几何中的应用,线面角的计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{8}{25}$ | B. | $\frac{8}{5}$ | C. | $\frac{8}{25}$ | D. | $\frac{{1-2\sqrt{6}}}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y2=2x | B. | y2=3x | C. | y2=4x | D. | y2=x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com